We show that every Gaussian mixed quantum state can be disentangled by conjugation with a passive symplectic transformation, that is a metaplectic operator associated with a symplectic rotation. The main tools we use are the Werner-Wolf condition on covariance matrices and the symplectic covariance of Weyl quantization. Our result therefore complements a recent study by Lami, Serafini, and Adesso.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8550114 | PMC |
http://dx.doi.org/10.1007/s11005-021-01410-4 | DOI Listing |
Photochem Photobiol Sci
January 2025
CQC-IMS, Department of Chemistry, University of Coimbra, 3004-535, Coimbra, Portugal.
Solvatochromism exhibited by azobenzene-4-sulfonyl chloride (here abbreviated as Azo-SCl) has been investigated in a series of non-polar, polar-aprotic and polar-protic solvents. The UV-vis spectra of Azo-SCl exhibit two long-wavelength bands, observed at 321-330 nm (band-I) and 435-461 nm (band-II), which are ascribed to the π*-π (S ← S) and π*-n (S ← S) transitions, respectively. The shorter wavelength band indicates a reversal in solvatochromism, from negative to positive solvatochromism, for a solvent with a dielectric constant of 32.
View Article and Find Full Text PDFNature
January 2025
Xanadu Quantum Technologies Inc., Toronto, Ontario, Canada.
Photonics offers a promising platform for quantum computing, owing to the availability of chip integration for mass-manufacturable modules, fibre optics for networking and room-temperature operation of most components. However, experimental demonstrations are needed of complete integrated systems comprising all basic functionalities for universal and fault-tolerant operation. Here we construct a (sub-performant) scale model of a quantum computer using 35 photonic chips to demonstrate its functionality and feasibility.
View Article and Find Full Text PDFJ Phys Condens Matter
January 2025
Physics, Indian Institute of Science Education and Research Bhopal, Bypass Road Bhauri, Bhopal, 462066, INDIA.
We investigate the dynamics of non-interacting particles in a one-dimensional tight-binding chain in the presence of an electric field with random amplitude drawn from a Gaussian distribution, and explicitly focus on the nature of quantum transport. We derive an exact expression for the probability propagator and the mean-squared displacement in the clean limit and generalize it for the disordered case using the Liouville operator method. Our analysis reveals that in the presence a random static field, the system follows diffusive transport; however, an increase in the field strength causes a suppression in the transport and thus asymptotically leads towards localization.
View Article and Find Full Text PDFJ Chem Theory Comput
January 2025
Center for Computational Quantum Physics, The Flatiron Institute, 162 Fifth Avenue, New York, New York, 10010, United States.
We present a generalization of the phaseless auxiliary-field quantum Monte Carlo (AFQMC) method to cavity quantum-electrodynamical (QED) matter systems. The method can be formulated in both the Coulomb and the dipole gauge. We verify its accuracy by benchmarking calculations on a set of small molecules against full configuration interaction and state-of-the-art QED coupled cluster (QED-CCSD) calculations.
View Article and Find Full Text PDFChem Commun (Camb)
January 2025
Department of Chemistry, Quantum Chemistry, TU Darmstadt, Peter-Grünberg-Str. 4, 64287 Darmstadt, Germany.
The two key parameters extracted from Mössbauer spectroscopy, isomer shift and quadrupole splitting, have well-known temperature dependencies. While the behavior of the values following a temperature change has long been known, its microscopic origins are less clear. For quantum chemical calculations - formally representing the situation at 0 K - significant discrepancies with the experiment can arise, especially at elevated temperatures.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!