In this study, a Venturi tube is proposed as an efficient static mixer incorporated into a continuous recirculation system for obtaining solid lipid nanoparticles (SLN) of monoolein. The device's operating principle consists of producing a turbulent flux in the throat of a Venturi tube. Taking advantage of this effect SLN of monoolein were obtained by rapid diffusion of the organic phase into the aqueous phase (stabilizer), causing lipid aggregation on the nanometric particles. The main aim of the present study was to evaluate the critical factors for obtaining the SLN of monoolein in order to control the independent variables of this methodology. A Box-Behnken design was used to study such independent variables (factors) as injection rate (X1), recirculation rate (X2), and stabilizer (X3) on the dependent variables; namely, process yield (Y1), particle size (Y2), polydispersity index (Y3) and zeta potential (Y4). The optimum operating conditions for preparing SLN were: injection rate, 1.6 mL/min; recirculation rate, 4.2 L/min; and stabilizer concentration, 1.0 w/v, with a value of = 0.84. The predicted responses of the particle size were 212.0 nm, with a polydispersity index of 0.21, a zeta potential of -19.9 mV, and a process yield of 96.0%. Under the same operating condition, SLN formed with different lipids and stabilizers were obtained with nanometric size and zeta potential of ∼ -30.0 mV. Results show that the Venturi tube method is an innovative and versatile technique for preparing SLN of nanometric size with high process yields through a turbulent flow.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/03639045.2021.1989456 | DOI Listing |
Ultrason Sonochem
January 2025
School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an 710049, China; MOE Key Laboratory of Cryogenic Technology and Equipment, Xi'an Jiaotong University, Xi'an 710049, China.
Cavitation plays a crucial role in the reliability of components in refrigeration systems. The properties of refrigerants change significantly with temperature, thereby amplifying the impact of thermodynamic effects. This study, based on the Large Eddy Simulation (LES) method and the Schnerr-Sauer (S-S) cavitation model, investigates the transient cavitating flow characteristics of the R134a refrigerant in a Venturi tube (VT).
View Article and Find Full Text PDFEur J Case Rep Intern Med
October 2024
Unità Terapia Intensiva Respiratoria, AOE Cannizzaro, Catania, Italy.
Background: The level of spinal cord injury affects the severity of respiratory impairment and the alteration of respiratory pattern and gas exchanges. Lesions at the C3-C5 level (phrenic nerve nucleus) cause disruption of descending input with paralysis of the main inspiratory muscle, often requiring tracheostomy and prolonged mechanical ventilation. Oxygen therapy is essential to switch from ventilatory support to removal of the endotracheal tube to correct residual difficulties in oxygenation management.
View Article and Find Full Text PDFUltrason Sonochem
December 2024
Kevin T. Crofton Department of Aerospace and Ocean Engineering, Virginia Tech, Blacksburg, 24060, VA, USA; Univ. Lille, CNRS, ONERA, Arts et Metiers ParisTech, Centrale Lille, FRE 2017 - LMFL - Laboratoire de Mecanique des fluides de Lille, Kampe de Feriet, F-59000, Lille, France.
Hydrodynamic Cavitation (HC) is a highly turbulent, unsteady, multi-phase flow that has been useful in many processing applications like wastewater treatment and process intensification and hence needs to be studied in detail. The aim of this study is to investigate the mechanisms driving HC inside a Venturi tube using numerical simulations. The numerical simulations are conducted in the form of both two-dimensional (2D) and three-dimensional (3D) simulations using the Detached Eddy Simulation (DES) model database to simulate the cavitation-turbulence interplay, and the results are validated against high-fidelity experimental data.
View Article and Find Full Text PDFMicromachines (Basel)
September 2024
Provincial Key Laboratory of Multimodal Perceiving and Intelligent Systems, Jiaxing University, Jiaxing 314001, China.
A novel polishing method is proposed to increase material removal rates through the acceleration of abrasive movements using micro-jets formed by spontaneous collapses of bubbles due to the cavitation in a special-shaped Venturi tube. The Venturi structure is optimized by numerical simulations. Process-related parameters for the optimal cavitation ratio are investigated for achieving maximum adaptation to polishing flat workpieces.
View Article and Find Full Text PDFSensors (Basel)
August 2024
Pulmonology Department, Santa Maria Local Health Unit, 1769-001 Lisbon, Portugal.
The high cost and limited availability of home spirometers pose a significant barrier to effective respiratory disease management and monitoring. To address this challenge, this paper introduces a novel Venturi-based spirometer designed for home use, leveraging the Bernoulli principle. The device features a 3D-printed Venturi tube that narrows to create a pressure differential, which is measured by a differential pressure sensor and converted into airflow rate.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!