Stochastic Spiking Behavior in Neuromorphic Networks Enables True Random Number Generation.

ACS Appl Mater Interfaces

The MacDiarmid Institute for Advanced Materials and Nanotechnology, School of Physical and Chemical Sciences, Te Kura Matu, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand.

Published: November 2021

There is currently a great deal of interest in the use of nanoscale devices to emulate the behaviors of neurons and synapses and to facilitate brain-inspired computation. Here, it is shown that percolating networks of nanoparticles exhibit stochastic spiking behavior that is strikingly similar to that observed in biological neurons. The spiking rate can be controlled by the input stimulus, similar to "rate coding" in biology, and the distributions of times between events are log-normal, providing insights into the atomic-scale spiking mechanism. The stochasticity of the spiking behavior is then used for true random number generation, and the high quality of the generated random bit-streams is demonstrated, opening up promising routes toward integration of neuromorphic computing with secure information processing.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.1c13668DOI Listing

Publication Analysis

Top Keywords

spiking behavior
12
stochastic spiking
8
true random
8
random number
8
number generation
8
behavior neuromorphic
4
neuromorphic networks
4
networks enables
4
enables true
4
generation currently
4

Similar Publications

Introduction: Despite the efficacy and safety of SARS-CoV-2 vaccines, inflammatory and/or thrombotic episodes have been reported. Since the impact of COVID-19 vaccines on the endothelium remains uncertain, our objective was to assess endothelial activation status before and 90 days after the third dose of the BNT162b2 mRNA COVID-19 vaccine.

Methods: A prospective longitudinal study was conducted at University General Hospital of Albacete, involving 38 healthy health-care workers.

View Article and Find Full Text PDF

Direct detection of phycocyanin in sediments by hyperspectral imaging.

J Paleolimnol

December 2024

Institute of Geography and Oeschger Center for Climate Change Research, University of Bern, Hallerstrasse 12, 3012 Bern, Switzerland.

Unlabelled: Cyanobacteria are ubiquitous aquatic organisms with a remarkable evolutionary history reaching as far as 1.9 Ga. They play a vital role in ecosystems yet also raise concerns due to their association with harmful algal blooms.

View Article and Find Full Text PDF

Hardware neural networks could perform certain computational tasks orders of magnitude more energy-efficiently than conventional computers. Artificial neurons are a key component of these networks and are currently implemented with electronic circuits based on capacitors and transistors. However, artificial neurons based on memristive devices are a promising alternative, owing to their potentially smaller size and inherent stochasticity.

View Article and Find Full Text PDF

Movement disorders such as Parkinson's disease (PD) and cervical dystonia (CD) are associated with abnormal neuronal activity in the globus pallidus internus (GPi). Reduced firing rate and presence of spiking bursts are typical for CD, whereas PD is characterized by high frequency tonic activity. This research aims to identify the most important pallidal spiking parameters to classify these conditions.

View Article and Find Full Text PDF

Unlabelled: The locus coeruleus (LC) is the primary source of noradrenaline (NA) in brain and its activity is essential for learning, memory, stress, arousal, and mood. LC-NA neuron activity varies over the sleep-wake cycle, with higher activity during wakefulness, correlating with increased CSF NA levels. Whether spontaneous and burst firing of LC-NA neurons during active and inactive periods is controlled by mechanisms independent of wakefulness and natural sleep, is currently unknown.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!