A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Ionic Diffusion-Driven Ionovoltaic Transducer for Probing Ion-Molecular Interactions at Solid-Liquid Interface. | LitMetric

Ionic Diffusion-Driven Ionovoltaic Transducer for Probing Ion-Molecular Interactions at Solid-Liquid Interface.

Adv Sci (Weinh)

School of Chemical and Biological Engineering, and Institute of Chemical Processes, College of Engineering, Seoul National University, Gwanak-gu, Seoul, 08826, Republic of Korea.

Published: January 2022

Ion-solid surface interactions are one of the fundamental principles in liquid-interfacing devices ranging from various electrochemical systems to electrolyte-driven energy conversion devices. The interplays between these two phases, especially containing charge carriers in the solid layer, work as a pivotal role in the operation of these devices, but corresponding details of those effects remain as unrevealed issues in academic fields. Herein, an ion-charge carrier interaction at an electrolyte-semiconductor interface is interrogated with an ion-dynamics-induced (ionovoltaic) energy transducer, controlled by interfacial self-assembled molecules. An electricity generating mechanism from interfacial ionic diffusion is elucidated in terms of the ion-charge carrier interaction, originated from a dipole potential effect of the self-assembled molecular layer (SAM). In addition, this effect is found to be modulated via chemical functionalization of the interfacial molecular layer and transition metal ion complexation therein. With the aiding of surface analytic techniques and a liquid-interfacing Hall measurement, electrical behaviors of the device depending on the magnitude of the ion-ligand complexation are interrogated, thereby demonstrating the ion-charge carrier interplays spanning at electrolyte-SAM-semiconductor interface. Hence, this system can be applied to study molecular interactions, including chemical and physical influences, occurring at the solid-liquid interfacial region.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8728816PMC
http://dx.doi.org/10.1002/advs.202103038DOI Listing

Publication Analysis

Top Keywords

ion-charge carrier
12
carrier interaction
8
molecular layer
8
ionic diffusion-driven
4
diffusion-driven ionovoltaic
4
ionovoltaic transducer
4
transducer probing
4
probing ion-molecular
4
ion-molecular interactions
4
interactions solid-liquid
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!