Design of reversible organelle-like microcompartments formed by liquid-liquid phase separation in cell-mimicking entities has significantly advanced the bottom-up construction of artificial eukaryotic cells. However, organizing the formation of artificial organelle architectures in a spatiotemporal manner within complex primitive compartments remains scarcely explored. In this work, thermoresponsive hybrid polypeptide-polymer conjugates are rationally engineered and synthesized, resulting from the conjugation of an intrinsically disordered synthetic protein (IDP), namely elastin-like polypeptide, and synthetic polymers (poly(ethylene glycol) and dextran) that are widely used as macromolecular crowding agents. Cell-like constructs are built using droplet-based microfluidics that are filled with such bioconjugates and an artificial cytoplasm system that is composed of specific polymers conjugated to the IDP. The distinct spatial organizations of two polypeptide-polymer conjugates and the dynamic assembly and disassembly of polypeptide-polymer coacervate droplets in response to temperature are studied in the cytomimetic protocells. Furthermore, a monoblock IDP with longer length is concurrently included with bioconjugates individually inside cytomimetic compartments. Both bioconjugates exhibit an identical surfactant-like property, compartmentalizing the monoblock IDP coacervates via temperature control. These findings lay the foundation for developing hierarchically structured synthetic cells with interior organelle-like structures which could be designed to localize in desired phase-separated subcompartments.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8693077PMC
http://dx.doi.org/10.1002/advs.202102508DOI Listing

Publication Analysis

Top Keywords

intrinsically disordered
8
polypeptide-polymer conjugates
8
monoblock idp
8
spatiotemporal dynamic
4
dynamic assembly/disassembly
4
assembly/disassembly organelle-mimics
4
organelle-mimics based
4
based intrinsically
4
disordered protein-polymer
4
protein-polymer conjugates
4

Similar Publications

This work presents an investigation of the influence of poly(-isopropylacrylamide) (PNIPAM) polymer on the structural dynamics of intrinsically disordered alpha-synuclein (α-syn) protein, exploring the formation and intricate features of the resulting α-syn/PNIPAM complexes. Using atomistic molecular dynamics (MD) simulations, our study analyzes the impact of initial configuration, polymer molecular weight, and protein mutations on the α-syn and the α-syn/PNIPAM complex. Atomistic simulations, of a few μs, of the protein/polymer complex reveal crucial insights into molecular interactions within the complex, emphasizing a delicate balance of forces governing its stability and structural evolution.

View Article and Find Full Text PDF

In-droplet hydrogen/deuterium exchange (HDX)-mass spectrometry (MS) experiments have been conducted for peptides of highly varied conformational type. A new model is presented that combines the use of protection factors (PF) from molecular dynamics (MD) simulations with intrinsic HDX rates ( ) to obtain a structure-to-reactivity calibration curve. Using the model, the relationship of peptide structural flexibility and HDX reactivity for different peptides is elucidated.

View Article and Find Full Text PDF

A variational graph-partitioning approach to modeling protein liquid-liquid phase separation.

Cell Rep Phys Sci

November 2024

Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06520, USA.

Graph neural networks (GNNs) have emerged as powerful tools for representation learning. Their efficacy depends on their having an optimal underlying graph. In many cases, the most relevant information comes from specific subgraphs.

View Article and Find Full Text PDF

Biomolecular condensates are dynamic intracellular entities defined by their sequence- and composition-encoded material properties. During aging, these properties can change dramatically, potentially leading to pathological solidlike states, the mechanisms of which remain poorly understood. Recent experiments reveal that the aging of condensates involves a complex interplay of solvent depletion, strengthening of sticker links, and the formation of rigid structural segments such as beta fibrils.

View Article and Find Full Text PDF

Taking into account involvement of the RNA-binding proteins in regulation of activity of poly(ADP-ribose) polymerase 1 (PARP1), a key factor of DNA repair, the effect of the intrinsically disordered protein Sam68 (Src-associated substrate during mitosis of 68 kDa) on catalytic activity of this enzyme was studied. Plasmid containing coding sequence of the Sam68 protein was obtained. Using the obtained construct, conditions for the Sam68 expression in cells were optimized and procedure for protein purification was developed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!