Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
This paper presents the results of a measurement campaign for assessing the release of particles and the potential exposure of workers in metal additive manufacturing. The monitoring deals with three environments, i.e., two academic laboratories and one production site, while printing different metallic alloys for chemical composition and size. The monitored devices implement different metal 3D printing processes, named Selective Laser Melting, Laser Metal Deposition and Hybrid Laser Metal Deposition, providing a wide overview of the current laser-based Additive Manufacturing technologies. Despite showing the generation of metal powders during the printing processes, the usual measurements based on gravimetric analysis did not highlight concentrations higher than the international exposure limits for the selected metals (i.e., chromium, cobalt, iron, nickel, and copper). Additional data, collected through a cascade impactor and particle counter coupled with the achievements from previous measurements reported in literature, indicate that during the printing operations, fine and ultrafine metal particles might be generated. Finally, the authors introduced a preliminary characterisation of the particles released during the different phases of the investigated AM processes (powder charging, printing, part cleaning and support removal), highlighting how the different operations may affect the particle size and concentration.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9453568 | PMC |
http://dx.doi.org/10.2486/indhealth.2021-0114 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!