A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Particle measurements of metal additive manufacturing to assess working occupational exposures: a comparative analysis of selective laser melting, laser metal deposition and hybrid laser metal deposition. | LitMetric

This paper presents the results of a measurement campaign for assessing the release of particles and the potential exposure of workers in metal additive manufacturing. The monitoring deals with three environments, i.e., two academic laboratories and one production site, while printing different metallic alloys for chemical composition and size. The monitored devices implement different metal 3D printing processes, named Selective Laser Melting, Laser Metal Deposition and Hybrid Laser Metal Deposition, providing a wide overview of the current laser-based Additive Manufacturing technologies. Despite showing the generation of metal powders during the printing processes, the usual measurements based on gravimetric analysis did not highlight concentrations higher than the international exposure limits for the selected metals (i.e., chromium, cobalt, iron, nickel, and copper). Additional data, collected through a cascade impactor and particle counter coupled with the achievements from previous measurements reported in literature, indicate that during the printing operations, fine and ultrafine metal particles might be generated. Finally, the authors introduced a preliminary characterisation of the particles released during the different phases of the investigated AM processes (powder charging, printing, part cleaning and support removal), highlighting how the different operations may affect the particle size and concentration.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9453568PMC
http://dx.doi.org/10.2486/indhealth.2021-0114DOI Listing

Publication Analysis

Top Keywords

laser metal
16
metal deposition
16
additive manufacturing
12
metal
9
metal additive
8
selective laser
8
laser melting
8
melting laser
8
deposition hybrid
8
hybrid laser
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!