Proteomics analysis reveals several metabolic alterations in cyanobacterium Anabaena sp. NC-K1 in response to alpha-cypermethrin exposure.

Environ Sci Pollut Res Int

Environmental Biotechnology Laboratory, Department of Biotechnology and Bioinformatics, North-Eastern Hill University, Shillong, Meghalaya, 793022, India.

Published: March 2022

AI Article Synopsis

Article Abstract

In the current study, the effect of the EC and LC concentrations of pyrethroid insecticide alpha-cypermethrin to cyanobacteria Anabaena sp. NC-K1 was investigated at different time exposures (1st day, 4th day and 7th day) with reference to growth, photosynthetic pigments, oxidative damage and antioxidant defence system. Superoxide dismutase (1.38-fold), peroxidase (5.04) and proline content (2.27-fold) were enhanced compared to the control. After performing 2D gel electrophoresis at 1st day EC exposure, where appropriate differences in the biochemical and physiological parameters were observed, 22 differentially accumulated proteins (20 upregulated and 2 downregulated) were selected for mass spectrometry. Out of 42 proteins identified, 20 upregulated protein spots were classified into twelve categories according to their metabolic functions. Proteins related to photosynthesis (phycobilisome rod-core linker polypeptide, rubisco), stress responses (Hsp70, Hsp40, catalase family peroxidase), translation (elongation factor Tu) and amino acid biosynthesis and metabolism (3-phosphoshikimate 1-carboxyvinyl transferase) were significantly upregulated. Additionally, proteins involved in transcription and DNA repair (Snf-2 histone linker phd ring helicase, RNA polymerase sigma factor RpoD and Holliday junction ATP-dependent DNA helicase RuvA) were considerably upregulated. Upregulation of these proteins against pesticide stress presumably maintained the photosynthesis, energy metabolism, carbohydrate metabolism, transport and signalling proteins, transcription, translation and DNA repair. Additionally, these proteins might involve in sufficient detoxification of ROS and play a crucial role in damage removal and repair of oxidized proteins, lipids and nucleic acids. Taken together, Anabaena sp. NC-K1 responded towards alpha-cypermethrin stress via modulating its proteome to maintain its cellular metabolism and homeostasis.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11356-021-16611-6DOI Listing

Publication Analysis

Top Keywords

anabaena nc-k1
12
1st day
8
proteins
8
additionally proteins
8
dna repair
8
proteomics analysis
4
analysis reveals
4
reveals metabolic
4
metabolic alterations
4
alterations cyanobacterium
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!