Reactive oxygen species (ROS) generate oxidized bases and single-strand breaks (SSBs), which are fixed by base excision repair (BER) and SSB repair (SSBR), respectively. Although excision and repair of damaged bases have been extensively studied, the function of the sliding clamp, proliferating cell nuclear antigen (PCNA), including loading/unloading, remains unclear. We report that, in addition to PCNA loading by replication factor complex C (RFC), timely PCNA unloading by the ATPase family AAA domain-containing protein 5 (ATAD5)-RFC-like complex is important for the repair of ROS-induced SSBs. We found that PCNA was loaded at hydrogen peroxide (H2O2)-generated direct SSBs after the 3'-terminus was converted to the hydroxyl moiety by end-processing enzymes. However, PCNA loading rarely occurred during BER of oxidized or alkylated bases. ATAD5-depleted cells were sensitive to acute H2O2 treatment but not methyl methanesulfonate treatment. Unexpectedly, when PCNA remained on DNA as a result of ATAD5 depletion, H2O2-induced repair DNA synthesis increased in cancerous and normal cells. Based on higher H2O2-induced DNA breakage and SSBR protein enrichment by ATAD5 depletion, we propose that extended repair DNA synthesis increases the likelihood of DNA polymerase stalling, shown by increased PCNA monoubiquitination, and consequently, harmful nick structures are more frequent.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8599757 | PMC |
http://dx.doi.org/10.1093/nar/gkab999 | DOI Listing |
Mar Biotechnol (NY)
January 2025
Departamento de Biología, Facultad de Ciencias del Mar y Ambientales, Universidad de Cádiz, 11510, Puerto Real (Cádiz), Spain.
The use of cell lines as alternative models for environmental physiology studies opens a new window of possibilities and is becoming an increasingly used tool in marine research to fulfil the 3R's rule. In this study, an embryonic monoclonal stem cell line obtained from a marine teleost (gilthead seabream, Sparus aurata) was employed to assess the effects of photoperiod (light/dark cycles vs constant dark) and light spectrum (white, blue, green, blue/green and red lights) on gene expression and rhythms of cellular markers of proliferation, DNA repair, apoptosis and cellular/oxidative stress by RT-qPCR and cosinor analyses. The results obtained revealed the optimal performance of cells under blue light (LDB), with all the genes analysed showing their highest RNA expression levels and most robust daily variations/rhythms in this condition.
View Article and Find Full Text PDFMicrob Biotechnol
January 2025
Sichuan Institute of Edible Fungi, Sichuan Academy of Agricultural Sciences, Chengdu, China.
Ascomycetes fungi are often prone to degeneration. Agricultural production of the prized ascomycete mushroom Morchella importuna (black morel) typically suffers from reduced yield and malformed ascocarps owing to culture degeneration. This study compared M.
View Article and Find Full Text PDFEnviron Microbiol
February 2025
Department of Biology, CBMA (Centre of Molecular and Environmental Biology), University of Minho, Braga, Portugal.
Wine industry has faced pressure to innovate its products. Saccharomyces cerevisiae has been the traditional yeast for producing alcoholic beverages, but interest has shifted from the conventional S. cerevisiae to non-Saccharomyces yeasts for their biotechnological potential.
View Article and Find Full Text PDFBiochem Soc Trans
January 2025
Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, Texas, 75080, USA.
Nucleosomes, the building block of chromatin, are responsible for regulating access to the DNA sequence. This control is critical for essential cellular processes, including transcription and DNA replication and repair. Studying chromatin can be challenging both in vitro and in vivo, leading many to use a mono-nucleosome system to answer fundamental questions relating to chromatin regulators and binding partners.
View Article and Find Full Text PDFAppl Environ Microbiol
January 2025
Department of Microbiology and Immunology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan.
Ultraviolet (UV) C light emitted by a krypton chloride (KrCl) lamp consists of mainly less harmful 222-nm Far-UVC (unfiltered 222-mm Far-UVC) compared with conventionally used 254-nm UVC. It also contains wavelengths that are harmful to mammalian cells. By contrast, UVC from a KrCl lamp with optical filter (filtered 222-nm Far-UVC) consists of much less harmful 222-nm Far-UVC and is available for sterilization of dwelling spaces.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!