Friedreich's ataxia (FRDA) is a severe multisystem disease caused by transcriptional repression induced by expanded GAA repeats located in intron 1 of the Frataxin (FXN) gene encoding frataxin. FRDA results from decreased levels of frataxin; thus, stabilization of the FXN mRNA already present in patient cells represents an attractive and unexplored therapeutic avenue. In this work, we pursued a novel approach based on oligonucleotide-mediated targeting of FXN mRNA ends to extend its half-life and availability as a template for translation. We demonstrated that oligonucleotides designed to bind to FXN 5' or 3' noncoding regions can increase FXN mRNA and protein levels. Simultaneous delivery of oligonucleotides targeting both ends increases efficacy of the treatment. The approach was confirmed in several FRDA fibroblast and induced pluripotent stem cell-derived neuronal progenitor lines. RNA sequencing and single-cell expression analyses confirmed oligonucleotide-mediated FXN mRNA upregulation. Mechanistically, a significant elongation of the FXN mRNA half-life without any changes in chromatin status at the FXN gene was observed upon treatment with end-targeting oligonucleotides, indicating that transcript stabilization is responsible for frataxin upregulation. These results identify a novel approach toward upregulation of steady-state mRNA levels via oligonucleotide-mediated end targeting that may be of significance to any condition resulting from transcription downregulation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8599914 | PMC |
http://dx.doi.org/10.1093/nar/gkab954 | DOI Listing |
Stem Cell Res
June 2024
Genomics and Molecular Medicine Division, CSIR - Institute of Genomics and Integrative Biology, New Delhi 110007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India; Division of Investigations of Human Pathology by Application Genomics and Stem Cells (iHPSCs-AG), India. Electronic address:
Friedreich's ataxia is a spinocerebellar degenerative disease caused by microsatellite (GAA.TTC)n repeat expansion in the first intron of FXN gene. Here, we developed iPSC lines from an FRDA patient (IGIBi016-A) and non-FRDA healthy control (IGIBi017-A).
View Article and Find Full Text PDFStem Cell Res
April 2024
Genomics and Molecular Medicine Division, CSIR - Institute of Genomics and Integrative Biology, New Delhi 110007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India; Division of Investigations of Human Pathology by Application Genomics and Stem Cells (iHPSCs-AG), India. Electronic address:
Friedreich's ataxia is a neurodegenerative disorder caused by the hyper expansion of (GAA-TTC)n triplet repeats in the first intron of the FXN gene. Here, we generated iPSC lines from two individuals with FRDA, both of whom have homozygous GAA repeat expansion in the first intron of FXN gene. Both iPSC lines demonstrated characteristics of pluripotency, including expression of pluripotency markers, stable karyotypes and ability to develop into all three germ layers, and presence of GAA repeat expansion with reduced FXN mRNA expression.
View Article and Find Full Text PDFStem Cell Res
February 2024
Genomics and Molecular Medicine Division, CSIR - Institute of Genomics and Integrative Biology, New Delhi 110007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India; Division of Investigations of Human Pathology by Application Genomics and Stem Cells (iHPSCs-AG), India. Electronic address:
Friedreich's ataxia (FRDA) is a rare neurodegenerativedisorder caused by over expansion of GAA repeats in thefirstintron ofFXN gene. Here, we generated two iPSC lines from FRDA patients with biallelic expansion of GAA repeats in the first intron ofFXNgene.IGIBi014-A and IGIBi015-Aboth iPSC lines demonstrated characteristics of pluripotency, normal karyotypes (46, XY),the capacity to differentiate into all three germ layers, and the ability to sustain the GAA repeat expansion with decreased FXN mRNA expression.
View Article and Find Full Text PDFMol Genet Genomics
May 2023
Department of Reproductive Biology, Instituto Nacional de Ciencias Médicas y Nutrición, Salvador Zubirán, Av. Vasco de Quiroga #15, Tlalpan, C.P. 14080, México City, México.
The role of frataxin (FXN) has been studied extensively in Friedreich ataxia patients, however, the molecular bases underlining the sex steroid-dependent gene expression profiles of FXN in adult tissues are unknown. I describe the molecular characterization of hamster FXN by examining the sexually dimorphic expression and its regulation by sex steroids. Sequence analysis of FXN cDNA showed 630 bp-long ORF encoding 209 amino acids.
View Article and Find Full Text PDFAnal Chem
February 2023
Penn/CHOP Friedreich's Ataxia Center of Excellence, Philadelphia, Pennsylvania 19104, United States.
Friedreich's ataxia (FRDA) is caused primarily by expanded GAA repeats in intron 1 of both alleles of the gene, which causes transcriptional silencing and reduced expression of frataxin mRNA and protein. FRDA is characterized by slowly progressive ataxia and cardiomyopathy. Symptoms generally appear during adolescence, and patients slowly progress to wheelchair dependency usually in the late teens or early twenties with death on average in the 4th decade.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!