Germinal centers (GCs) elicit protective humoral immunity through a combination of antibody-secreting cells and memory B cells, following pathogen invasion or vaccination. However, the possibility of a GC response inducing protective immunity against reinfection following severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection remains unknown. We found GC activity was consistent with seroconversion observed in recovered macaques and humans. Rechallenge with a different clade of virus resulted in significant reduction in replicating virus titers in respiratory tracts in macaques with high GC activity. However, diffuse alveolar damage and increased fibrotic tissue were observed in lungs of reinfected macaques. Our study highlights the importance of GCs developed during natural SARS-CoV-2 infection in managing viral loads in subsequent infections. However, their ability to alleviate lung damage remains to be determined. These results may improve understanding of SARS-CoV-2-induced immune responses, resulting in better coronavirus disease 2019 (COVID-19) diagnosis, treatment, and vaccine development.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8643412PMC
http://dx.doi.org/10.1093/infdis/jiab535DOI Listing

Publication Analysis

Top Keywords

lung damage
8
sars-cov-2 infection
8
germinal center-induced
4
center-induced immunity
4
immunity correlated
4
correlated protection
4
protection sars-cov-2
4
sars-cov-2 reinfection
4
reinfection lung
4
damage germinal
4

Similar Publications

Mesenchymal stromal cells (MSCs) are multipotent adult stem cells which possess immunomodulatory and repair capabilities. In this study, we investigated whether MSC therapy could modulate inflammation and lung damage in the lungs of Scnn1b-transgenic mice overexpressing the β-subunit of the epithelial sodium channel (β-ENaC), a model with features of Cystic Fibrosis lung disease. Human bone marrow derived MSC cells were intravenously delivered to mice, prior to collection of bronchoalveolar lavage (BALF) and tissue.

View Article and Find Full Text PDF

The clinical manifestations of SARS-CoV-2 infection may range from asymptomatic or minor conditions to severe and life-threatening outcomes. The respiratory system is a principal target of the virus and in the majority of cases of severe disease, an acute form of pneumonia develops. Despite concerted global efforts to elucidate the pathogenic mechanisms of COVID-19, the progression of the infection leading to pulmonary damage remains poorly understood.

View Article and Find Full Text PDF

Jie-Geng-Tang (JGT), composed of Platycodon grandiflorus (Jacq.) A. DC and Glycyrrhiza uralensis Fisch, is widely used in traditional Chinese medicine for its potential effects in preventing pulmonary fibrosis (PF).

View Article and Find Full Text PDF

Temporal RAGE Over-Expression Disrupts Lung Development by Modulating Apoptotic Signaling.

Curr Issues Mol Biol

December 2024

Department of Cell Biology and Physiology, Brigham Young University, 3054 Life Sciences Building, Provo, UT 84602, USA.

Receptors for advanced glycation end products (RAGE) are multiligand cell surface receptors found most abundantly in lung tissue. This study sought to evaluate the role of RAGE in lung development by using a transgenic (TG) mouse model that spatially and temporally controlled RAGE overexpression. Histological imaging revealed that RAGE upregulation from embryonic day (E) 15.

View Article and Find Full Text PDF

Sevoflurane is an inhalation anesthetic widely used for general anesthesia, but its genotoxic potential is controversial in clinical studies. It is unknown whether the effects are due to surgery or the anesthetic. Thus, for the first time, the present study investigated genotoxicity in peripheral blood cells and in target organs (liver, lung, and kidney) and micronucleus (MN) in the bone marrow of a single exposure to sevoflurane at three different concentrations in monitored mice.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!