Allele substitution effects at quantitative trait loci (QTL) are part of the basis of quantitative genetics theory and applications such as association analysis and genomic prediction. In the presence of nonadditive functional gene action, substitution effects are not constant across populations. We develop an original approach to model the difference in substitution effects across populations as a first order Taylor series expansion from a "focal" population. This expansion involves the difference in allele frequencies and second-order statistical effects (additive by additive and dominance). The change in allele frequencies is a function of relationships (or genetic distances) across populations. As a result, it is possible to estimate the correlation of substitution effects across two populations using three elements: magnitudes of additive, dominance, and additive by additive variances; relationships (Nei's minimum distances or Fst indexes); and assumed heterozygosities. Similarly, the theory applies as well to distinct generations in a population, in which case the distance across generations is a function of increase of inbreeding. Simulation results confirmed our derivations. Slight biases were observed, depending on the nonadditive mechanism and the reference allele. Our derivations are useful to understand and forecast the possibility of prediction across populations and the similarity of GWAS effects.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8664574 | PMC |
http://dx.doi.org/10.1093/genetics/iyab138 | DOI Listing |
Calcif Tissue Int
January 2025
Orthopaedic Research Laboratory, Department of Orthopedic Surgery and Traumatology, Odense University Hospital & Department of Clinical Research, University of Southern Denmark, V18-812B-1, Etage 1, Bygning 45.4, Nyt Sund, SDU Campus 5230, Odense, Denmark.
There is an increasing demand for a suitable bone substitute to replace current clinical gold standard autografts or allografts. Majority of previous studies have focused on the early effects of substitutes on bone formation, while information on their long-term efficacies remains limited. This study investigated the efficacies of natural hydroxyapatite (nHA) derived from oyster shells and synthetic hydroxyapatite mixed with collagen (COL/HA) or chitosan (CS/HA) on bone regeneration and implant fixation in sheep.
View Article and Find Full Text PDFCalcif Tissue Int
January 2025
Department of Pediatrics, Osaka University Graduate School of Medicine, Suita, Japan.
Osteogenesis imperfecta (OI) is an inheritable skeletal disorder characterized by bone fragility often caused by pathogenic variants in the COL1A1 gene. Current OI mouse models with a glycine substitution in Col1a1 exhibit excessive severity, thereby limiting long-term pathophysiological analysis and drug effect assessments. To address this limitation, we constructed a novel OI mouse model mimicking a patient with OI type III.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, P. R. China.
Thermoelectric technology enables the direct and reversible conversion of heat into electrical energy without air pollution. Herein, the stability, electronic structure, and thermoelectric properties of methoxy-functionalized MC(OMe) (M = Sc, Ti, V, Cr, Y, Zr, Nb, Mo, Hf, Ta, and W) were systematically investigated using first-principles calculations and semiclassical Boltzmann transport theory. All MXenes, except those with M = Cr, Mo, and W, can be synthesized by substituting Cl- and Br-functionalized MXenes with deprotonated methanol, with stability governed by the M-O bond strength.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Brain Research Institute, Niigata University, Niigata, Niigata, Japan.
Background: APOE is well recognized to be the most influential susceptibility gene for Alzheimer's disease (AD). For the wild-type allele, e3, it is known that the e4 allele is a risk for AD, while the e2 allele is protective. Recently, genetic analyses with Caucasians have reported the critical associations between APOE rare missense variants (RMVs) and AD, and their importance has been pointed out in terms of disease pathogenesis of AD.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA.
Background: Lewy body dementia (LBD) is the second most prevalent dementia in the United States after Alzheimer's disease (AD). Recent studies have implicated rare mutations in two lipid transport genes, ABCA1 and ATP8B4, in Alzheimer's disease. Substantial co-pathology and shared risk factors indicate an intersectional genetic architecture between LBD and AD; therefore, we investigated the association of rare mutations in ABCA1 and ATP8B4 with LBD.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!