The metal doping strategy in all inorganic lead halide perovskites: synthesis, physicochemical properties, and optoelectronic applications.

Nanoscale

Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, State Key Laboratory of Traction Power, Southwest Jiaotong University, Chengdu 610031, P. R. China.

Published: November 2021

All inorganic perovskites CsPbX (X = Cl, Br, I), rising stars of optical materials, have shown promising application prospects in optoelectronic and photovoltaic fields. However, some open issues still exist in these perovskites, like poor long-term stability, inevitable intrinsic defects and much nonradiative recombination, which greatly weakens their optical capability and seriously hinders their further development. The metal doping strategy, through the partial substitution of foreign ions for native ions, has gradually become an effective method for significantly enhancing the comprehensive properties of CsPbX. Whereas some previous studies have reported the impressive properties of metal-doped CsPbX, there is still a lack of a comprehensive review on the influences of metal doping on CsPbX. In this review, we aim to provide a systematic review of the latest achievements in metal-doped CsPbX, which focuses on their synthetic methods and the positive effects of metal doping on structure, optical properties, morphology control, carrier behavior and related optoelectronic and photovoltaic devices. Finally, we put forward a few opportunities and challenges about the further investigation of metal-doped perovskites, which may help researchers explore new research directions.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d1nr04706jDOI Listing

Publication Analysis

Top Keywords

metal doping
16
doping strategy
8
optoelectronic photovoltaic
8
metal-doped cspbx
8
cspbx
5
metal
4
strategy inorganic
4
inorganic lead
4
lead halide
4
perovskites
4

Similar Publications

White light-emitting electrochemical cells based on metal-free TADF emitters.

Nat Commun

January 2025

The Organic Photonics and Electronics Group, Department of Physics, Umeå University, Umeå, Sweden.

The attainment of white emission from a light-emitting electrochemical cell (LEC) is important, since it enables illumination and facile color conversion from devices that can be cost-efficient and sustainable. However, a drawback with current white LECs is that they either employ non-sustainable metals as an emitter constituent or are intrinsically efficiency limited by that the emitter only converts singlet excitons to photons. Organic compounds that emit by thermally activated delayed fluorescence (TADF) can address these issues since they can harvest all excitons for light emission while being metal free.

View Article and Find Full Text PDF

Intervalence plasmons in boron-doped diamond.

Nat Commun

January 2025

Department of Nuclear, Plasma, and Radiological Engineering, The Grainger College of Engineering, University of Illinois Urbana-Champaign, Champaign, IL, USA.

Doped semiconductors can exhibit metallic-like properties ranging from superconductivity to tunable localized surface plasmon resonances. Diamond is a wide-bandgap semiconductor that is rendered electronically active by incorporating a hole dopant, boron. While the effects of boron doping on the electronic band structure of diamond are well-studied, any link between charge carriers and plasmons has never been shown.

View Article and Find Full Text PDF

Fe, Ni, and Cu doped ceria nanoparticles (CeNPs) were prepared with a simple and one-pot hydrothermal synthesis method. We investigated the chemiluminescence (CL) interaction between these NPs and rhodamine B (Rh B) and found that the highest CL intensity was related to the Rh B- Cu doped CeNPs. We assigned that to the higher catalytic property of Cu doped NPs compared to the others.

View Article and Find Full Text PDF

Morphology regulation and element doping are effective means to improving the photocatalytic performance of graphite-phase carbon nitride (g-CN). In this article, using melamine and zinc chloride as raw materials, a novel kind of Zn/Cl-doped hollow microtubular g-CN (Zn-HT-CN) by a hydrothermal method was developed. The structure and morphology of Zn-HT-CN and reference samples were characterized by X-ray diffraction patterns (XRD), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS), etc.

View Article and Find Full Text PDF

Discovering electrocatalysts that can efficiently convert carbon dioxide (CO) to valuable fuels and feedstocks using excess renewable electricity is an emergent carbon-neutral technology. A single metal atom embedded in doped graphene, , single-atom catalyst (SAC), possesses high activity and selectivity for electrochemical CO reduction (COR) to CO, yet further reduction to hydrocarbons is challenging. Here, using density functional theory calculations, we investigate stability and reactivity of a broad SAC chemical space with various metal centers (3d transition metals) and dopants (2p dopants of B, N, O; 3p dopants of P, S) as electrocatalysts for COR to methane and methanol.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!