Phenotypic and genetic divergence are shaped by the homogenizing effects of gene flow and the differentiating processes of genetic drift and local adaptation. Herein, we examined the mechanisms that underlie phenotypic (size and color) and genetic divergence in 35 populations (535 individuals) of the poison frog Epipedobates anthonyi along four elevational gradients (0-1800 m asl) in the Ecuadorian Andes. We found phenotypic divergence in size and color despite relatively low genetic divergence at neutral microsatellite loci. Genetic and phenotypic divergence were both explained by landscape resistance between sites (isolation-by-resistance, IBR), likely due to a cold and dry mountain ridge between the northern and southern elevational transects that limits dispersal and separates two color morphs. Moreover, environmental differences among sites also explained genetic and phenotypic divergence, suggesting isolation-by-environment (IBE). When northern and southern transects were analyzed separately, genetic divergence was predicted either by distance (isolation-by-distance, IBD; northern) or environmental resistance between sites (IBR; southern). In contrast, phenotypic divergence was primarily explained by environmental differences among sites, supporting the IBE hypothesis. These results indicate that although distance and geographic barriers are important drivers of population divergence, environmental variation has a two-fold effect on population divergence. On the one hand, landscape resistance between sites reduces gene flow (IBR), while on the other hand, environmental differences among sites exert divergent selective pressures on phenotypic traits (IBE). Our work highlights the importance of studying both genetic and phenotypic divergence to better understand the processes of population divergence and speciation along ecological gradients.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8733028PMC
http://dx.doi.org/10.1038/s41437-021-00481-2DOI Listing

Publication Analysis

Top Keywords

phenotypic divergence
24
genetic phenotypic
16
genetic divergence
16
divergence
13
resistance sites
12
environmental differences
12
differences sites
12
population divergence
12
genetic
9
phenotypic
9

Similar Publications

The breadth and depth of plant leaf metabolomes have been implicated in key interactions with plant enemies aboveground. In particular, divergence in plant species chemical composition-amongst neighbors, relatives, or both-is often suggested as a means of escape from insect herbivore enemies. Plants also experience strong pressure from enemies such as belowground pathogens; however, little work has been carried out to examine the evolutionary trajectories of species' specialized chemistries in both roots and leaves.

View Article and Find Full Text PDF

Polyploidy is a powerful mechanism driving genetic, physiological, and phenotypic changes among cytotypes of the same species across both large and small geographic scales. These changes can significantly shape population structure and increase the evolutionary and adaptation potential of cytotypes. , an edaphic steno-endemic species with a narrow distribution in the Balkan Peninsula, serves as an intriguing case study.

View Article and Find Full Text PDF

Divergence in the Morphology and Energy Metabolism of Adult Polyphenism in the Cowpea Beetle .

Insects

December 2024

Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.

Adult polyphenism is a prevalent form of adaptive evolution that enables insects to generate discrete phenotypes based on environmental factors. However, the morphology and molecular mechanisms underlying adult dimorphism in (a global storage pest) remain elusive. Understanding these mechanisms is crucial for predicting the dispersal and population dynamics of .

View Article and Find Full Text PDF

Evolutionary divergence between homologous X-Y chromosome genes shapes sex-biased biology.

Nat Ecol Evol

January 2025

Section on Developmental Neurogenomics, Human Genetics Branch, NIMH IRP, NIH, Bethesda, MD, USA.

Sex chromosomes are a fundamental aspect of sex-biased biology, but the extent to which homologous X-Y gene pairs ('the gametologs') contribute to sex-biased phenotypes remains hotly debated. Although these genes tend to exhibit large sex differences in expression throughout the body (XX females can express both X members, and XY males can express one X and one Y member), there is conflicting evidence regarding the degree of functional divergence between the X and Y members. Here we develop and apply co-expression fingerprint analysis to characterize functional divergence between the X and Y members of 17 gametolog gene pairs across >40 human tissues.

View Article and Find Full Text PDF

Translational validity of mouse models of Alzheimer's disease (AD) is variable. Because change in weight is a well-documented precursor of AD, we investigated whether diversity of human AD risk weight phenotypes was evident in a longitudinally characterized cohort of 1,196 female and male humanized APOE (hAPOE) mice, monitored up to 28 months of age which is equivalent to 81 human years. Autoregressive Hidden Markov Model (AHMM) incorporating age, sex, and APOE genotype was employed to identify emergent weight trajectories and phenotypes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!