Objectives: Neuroinflammation and apoptosis are two key factors contributing to early brain injury (EBI) after subarachnoid hemorrhage (SAH) and are strongly associated with a poor prognosis. Recently, equilibrative nucleoside transporter 1 (ENT1) was emerged to accelerate the severity of inflammation and cell apoptosis in several nervous system diseases, including cerebral ischemia, neurodegeneration and epilepsy. However, no study has yet elaborated the expression levels and effects of ENT1 in EBI after SAH.

Methods: Sprague-Dawley rats were subjected to SAH by endovascular perforation. Nitrobenzylthioinosine (NBTI) was intranasally administered at 0.5 h after SAH. The protein expression levels of ENT1, NLRP3, Bcl2, Bax, ACS, Caspase-1, IL-1 were detected by western blot. The modified Garcia score and beam balance score were employed to evaluate the neurologic function of rats following SAH. In addition, hematoxylin-eosin, fluoro-jade C and TdT-mediated dUTP nick-end labeling staining were then used to evaluate brain tissue damage and neuronal apoptosis.

Results: Analysis indicated that endogenous levels of ENT1 were significantly upregulated at 24-hour post-SAH, accompanied by NLRP3 inflammasome activation and Bcl2 decline. The administration of NBTI, an inhibitor of ENT1, at a dose of 15 mg/kg, ameliorated neurologic deficits and morphologic lesions at both 24 and 72 h after SAH. Moreover, ENT1 inhibition efficiently mitigated neuronal degeneration and cell apoptosis. In addition, NBTI at 15 mg/kg observably increased Bcl2 content and decreased Bax level. Furthermore, suppression of ENT1 notably reduced the expression levels of NLRP3, apoptosis associated speck like protein containing CARD, caspase-1 and IL-1β.

Conclusions: NBTI relieved SAH-induced EBI partly through ENT1/NLRP3/Bcl2 pathway.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8560159PMC
http://dx.doi.org/10.1097/WNR.0000000000001733DOI Listing

Publication Analysis

Top Keywords

expression levels
12
neuroinflammation apoptosis
8
partly ent1/nlrp3/bcl2
8
ent1/nlrp3/bcl2 pathway
8
subarachnoid hemorrhage
8
cell apoptosis
8
levels ent1
8
ent1
7
nbti
5
apoptosis
5

Similar Publications

Cellular Cholesterol Loss Impairs Synaptic Vesicle Mobility via the CAMK2/Synapsin-1 Signaling Pathway.

Front Biosci (Landmark Ed)

January 2025

Department of Neurology, Jinshan Hospital, Fudan University, 201508 Shanghai, China.

Background: Neuronal cholesterol deficiency may contribute to the synaptopathy observed in Alzheimer's disease (AD). However, the underlying mechanisms remain poorly understood. Intact synaptic vesicle (SV) mobility is crucial for normal synaptic function, whereas disrupted SV mobility can trigger the synaptopathy associated with AD.

View Article and Find Full Text PDF

Background: This study investigates the role of small ubiquitin-like modifier (SUMO)-specific peptidase 5 (SENP5), a key regulator of SUMOylation, in esophageal squamous cell carcinoma (ESCC), a lethal disease, and its underlying molecular mechanisms.

Methods: Differentially expressed genes between ESCC mouse oesophageal cancer tissues and normal tissues were analysed via RNA-seq; among them, SENP5 expression was upregulated, and this gene was selected for further analysis. Immunohistochemistry and western blotting were then used to validate the increased protein level of SENP5 in both mouse and human ESCC samples.

View Article and Find Full Text PDF

Background: Diabetes mellitus is associated with morphological and functional impairment of the heart primarily due to lipid toxicity caused by increased fatty acid metabolism. Extracellular signal-regulated protein kinases 1 and 2 (ERK1/2) have been implicated in the metabolism of fatty acids in the liver and skeletal muscles. However, their role in the heart in diabetes remains unclear.

View Article and Find Full Text PDF

tiRNA-Gln-CTG is Involved in the Regulation of Trophoblast Cell Function in Pre-eclampsia and Serves as a Potent Biomarker.

Front Biosci (Landmark Ed)

January 2025

Department of Obstetrics and Gynecology, Zhongda Hospital, School of Medicine, Southeast University, 210000 Nanjing, Jiangsu, China.

Background: Pre-eclampsia (PE) is a gestational disorder that significantly endangers maternal and fetal health. Transfer ribonucleic acid (tRNA)-derived small RNAs (tsRNAs) are important in the progression and diagnosis of various diseases. However, their role in the development of PE is unclear.

View Article and Find Full Text PDF

Hydroxyapatite Chitosan Gradient Pore Scaffold Activates Oxidative Phosphorylation Pathway to Induce Bone Formation.

Front Biosci (Landmark Ed)

January 2025

Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Fujian Medical University, Fujian Provincial Key Laboratory of Stomatology, National Regional Medical Center, Binhai Campus of The First Affiliated Hospital, 350005 Fuzhou, Fujian, China.

Background: In this study, we prepared a porous gradient scaffold with hydroxyapatite microtubules (HAMT) and chitosan (CHS) and investigated osteogenesis induced by these scaffolds.

Methods: The arrangement of wax balls in the mold can control the size and distribution of the pores of the scaffold, and form an interconnected gradient pore structure. The scaffolds were systematically evaluated and for biocompatibility, biological activity, and regulatory mechanisms.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!