Objective: Volatile anesthetics are widely used for general anesthesia during surgical operations. Voltage-gated Na+ channels expressed in central neurons are major targets for volatile anesthetics; but it is unclear whether these drugs modulate native tetrodotoxin-resistant (TTX-R) Na+ channels, which are involved in the development and maintenance of inflammatory pain.
Methods: In this study, we examined the effects of sevoflurane on TTX-R Na+ currents (INa) in acutely isolated rat dorsal root ganglion neurons, using a whole-cell patch-clamp technique.
Results: Sevoflurane slightly potentiated the peak amplitude of transient TTX-R INa but more potently inhibited slow voltage-ramp-induced persistent INa in a concentration-dependent manner. Sevoflurane (0.86 ± 0.02 mM) (1) slightly shifted the steady-state fast inactivation relationship to hyperpolarizing ranges without affecting the voltage-activation relationship, (2) reduced the extent of use-dependent inhibition of Na+ channels, (3) accelerated the onset of inactivation and (4) delayed the recovery from inactivation of TTX-R Na+ channels. Thus, sevoflurane has diverse effects on TTX-R Na+ channels expressed in nociceptive neurons.
Conclusions: The present results suggest that the inhibition of persistent INa and the modulation of the voltage dependence and inactivation might be, at least in part, responsible for the analgesic effects elicited by sevoflurane.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1097/WNR.0000000000001731 | DOI Listing |
Adv Mater
January 2025
Frontiers Science Center for Flexible Electronics (FSCFE), MIIT Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University, Xi'an, 710072, China.
NaV(PO), based on multi-electron reactions between V/V/V, is a promising cathode material for SIBs. However, its practical application is hampered by the inferior conductivity, large barrier of V/V, and stepwise phase transition. Herein, these issues are addressed by constructing a medium-entropy material (NaVTiAlCrMnNi(PO), ME-NVP) with strong ME─O bond and highly occupied Na2 sites.
View Article and Find Full Text PDFArch Med Res
January 2025
Programa de Investigación de Cancer de Mama, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico; Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico. Electronic address:
Na⁺/H⁺ exchanger regulatory factor 2 (NHERF2) is a nucleocytoplasmic protein initially identified as a regulator of membrane-bound sodium-hydrogen exchanger 3 (NHE3). In the cytoplasm, NHERF2 regulates the activity of G protein-coupled receptors (GPCRs), including beta-2 adrenergic receptor (2β-AR), lysophosphatidic acid receptor 2, and parathyroid hormone type 1 receptor. In the nucleus, NHERF2 acts as a coregulator of transcription factors such as sex-determining region Y protein (SRY), involved in male sex determination, and estrogen receptor alpha (ERα).
View Article and Find Full Text PDFNano Lett
January 2025
Advanced Energy Storage Technology and Equipment Research Institute, Ningbo University, Ningbo, Zhejiang 315211, China.
Plateau-dominated hard carbon with a high rate of performance is challenging to obtain, and the in-depth mechanism of pore structure on the diffusion of sodium ions remains unclear. In this study, a facile liquid-phase molecular reconstruction strategy is proposed to regulate the orientation of the β-cyclodextrin molecules and prepare spherical hard carbon with continuous and ordered pore channels. Through detailed characterization, this approach is confirmed to optimize the accumulation of Na in the dispersion region, thus improving the plateau kinetics and enhancing the utilization of closed pores.
View Article and Find Full Text PDFEur J Hum Genet
January 2025
Service de Génétique Médicale, Centre Hospitalier Universitaire de Bordeaux, Bordeaux, France.
Pigmentation is orchestrated by hundreds of genes involved in cellular functions going from early developmental fate of pigment cells to melanin synthesis. The Two Pore Channel 2 (TPC2) a Ca2+ and Na+ channel acidifies melanosomal pH and thus inhibits pigmentation. A young patient was recently reported with generalized hypopigmentation but uneventful ocular examination, caused by the de novo heterozygous TPCN2 variant c.
View Article and Find Full Text PDFDrug Des Devel Ther
January 2025
State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China.
Purpose: The major cardiac voltage-gated sodium channel Na1.5 (I) is essential for cardiac action potential initiation and subsequent propagation. Compound Chinese medicine Wenxin Keli (WXKL) has been shown to suppress arrhythmias and heart failure.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!