Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The conventional drug discovery pipeline has proven to be unsustainable for rare diseases. Herein, we discuss recent advances in biomedical knowledge mining applied to discovering therapeutics for rare diseases. We summarize current chemogenomics data of relevance to rare diseases and provide a perspective on the effectiveness of machine learning (ML) and biomedical knowledge graph mining in rare disease drug discovery. We illustrate the power of these methodologies using a chordoma case study. We expect that a broader application of knowledge graph mining and artificial intelligence (AI) approaches will expedite the discovery of viable drug candidates against both rare and common diseases.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9124594 | PMC |
http://dx.doi.org/10.1016/j.drudis.2021.10.014 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!