Adipose tissue expression of UCP1 and PRDM16 genes and their association with postprandial triglyceride metabolism and glucose intolerance.

Diabetes Res Clin Pract

Department of Biochemistry, University College of Medical Sciences & GTB Hospital, University of Delhi, India.

Published: December 2021

Aims: UCP1 and PRDM16 genes, primarily involved in browning of adipose tissue that can affect lipid metabolism are also associated with diabetes risk. Therefore, we planned to study the adipose tissue expression of UCP1 and PRDM 16 genes in subjects with glucose intolerance to find out its association with postprandial triglyceride (PPTg) measures and T2DM.

Methods: A total of 30 subjects were recruited in three groups i.e., NGT, prediabetes and T2DM (NDDM + known T2DM) who were matched for age, sex and BMI. An 8-hour standardized fat challenge test was performed to study lipemic responses. UCP1 and PRDM16 genes quantification in adipose tissue was performed by real-time PCR followed by SDS PAGE.

Results: UCP1 gene expression in SAT was significantly lower in T2DM and prediabetes as compared to NGT group while PRDM16 gene expression was significantly lower in T2DM group as compared to NGT group. UCP1 gene expression correlated with PPTg measures as well as with glycaemic measures while PRDM16 gene expression correlated with glycaemic measures only.

Conclusion: This study found downregulation of PRDM16 and UCP1 gene expression in SAT in subjects with glucose intolerance. The association of UCP1 gene expression with PPTg dysmetabolism may contribute to greater predisposition to T2DM.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.diabres.2021.109115DOI Listing

Publication Analysis

Top Keywords

gene expression
24
adipose tissue
16
ucp1 gene
16
ucp1 prdm16
12
prdm16 genes
12
glucose intolerance
12
expression
8
tissue expression
8
ucp1
8
expression ucp1
8

Similar Publications

Background: The Microtubules-associated protein tau (MAPT), alpha-synuclein (SNCA), and leucine zipper tumor suppressor 3 (LZTS3) genes are implicated in neurodegeneration and tumor suppression, respectively. This study investigated the regulatory roles of eugenol on paraquat-altered genes.

Results: Forty male Wistar rats divided into five groups of eight rats were used.

View Article and Find Full Text PDF

Exome sequencing reveals a rare damaging variant in GRIN2C in familial late-onset Alzheimer's disease.

Alzheimers Res Ther

January 2025

Department of Neuroscience "Rita Levi Montalcini", University of Turin, Via Cherasco 15, Turin, 10126, Italy.

Background: Alzheimer's disease (AD) is a progressive neurodegenerative disorder with both genetic and environmental factors contributing to its pathogenesis. While early-onset AD has well-established genetic determinants, the genetic basis for late-onset AD remains less clear. This study investigates a large Italian family with late-onset autosomal dominant AD, identifying a novel rare missense variant in GRIN2C gene associated with the disease, and evaluates the functional impact of this variant.

View Article and Find Full Text PDF

Background: Metabolic dysfunction-associated steatotic liver disease (MASLD) encompasses a range of histological findings from the generally benign simple steatosis to steatohepatitis (MASH) which can progress to fibrosis and cirrhosis. Several factors, including the microbiome, may contribute to disease progression.

Results: Here, we demonstrate links between the presence and abundance of specific bacteria in the adipose and liver tissues, inflammatory genes, immune cell responses, and disease severity.

View Article and Find Full Text PDF

Background: Senescence classification is an acknowledged challenge within the field, as markers are cell-type and context dependent. Currently, multiple morphological and immunofluorescence markers are required. However, emerging scRNA-seq datasets have enabled an increased understanding of senescent cell heterogeneity.

View Article and Find Full Text PDF

Crosstalk between non-coding RNAs and programmed cell death in colorectal cancer: implications for targeted therapy.

Epigenetics Chromatin

January 2025

Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.

Background: Colorectal cancer (CRC) remains one of the most common causes of cancer-related mortality worldwide. Its progression is influenced by complex interactions involving genetic, epigenetic, and environmental factors. Non-coding RNAs (ncRNAs), including microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs), have been identified as key regulators of gene expression, affecting diverse biological processes, notably programmed cell death (PCD).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!