Poplar trees rapidly yield wood and are therefore suitable as a biofuel feedstock; however, the quality of poplar is modest, and the profitability of poplar cultivation depends on the efficiency of the harvesting process. This study offers a simple and sustainable technique to harvest lignocellulosic resources from poplar for bioethanol production. The proposed two-step pretreatment method increased the surface lignin content and decreased the surface polysaccharide content. The cellulose content increased to 54.9% and the xylan content decreased to 6.7% at 5% AC. The cellulose yield of poplar residues (Populus L.) reached 65.5% by this two-step acetic acid (AC) and sodium sulphite (SS) treatment method. Two-step pretreatment using 5% AC and 4% SS obtained a recovery of nearly 80% of the total available fermentable sugar. The surface characterization showed a higher porosity in treated samples, which improved their hydrolysability. This method decreased the amount of lignin in plant biomass, making it applicable for further wood resource recovery or waste recycling for biorefinery purposes at very low costs.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2021.132679DOI Listing

Publication Analysis

Top Keywords

poplar residues
8
residues populus
8
two-step acetic
8
acetic acid
8
acid sodium
8
sodium sulphite
8
two-step pretreatment
8
content decreased
8
poplar
6
structural properties
4

Similar Publications

Genetic improvement of low-lignin poplars: a new strategy based on molecular recognition, chemical reactions and empirical breeding.

Physiol Plant

December 2024

Laboratory of Tumor Targeted and Immune Therapy, Clinical Research Center for Breast, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, China.

As an important source of pollution in the papermaking process, the presence of lignin in poplar can seriously affect the quality and process of pulping. During lignin synthesis, Caffeoyl-CoA-O methyltransferase (CCoAOMT), as a specialized catalytic transferase, can effectively regulate the methylation of caffeoyl-coenzyme A (CCoA) to feruloyl-coenzyme A. Targeting CCoAOMT, this study investigated the substrate recognition mechanism and the possible reaction mechanism, the key residues of lignin binding were mutated and the lignin content was validated by deep convolutional neural-network model based on genome-wide prediction (DCNGP).

View Article and Find Full Text PDF

The following work explores a sustainable approach to repurpose organic waste from poplar pruning into lignocellulosic waste-based activated carbons (LPWACs) through environmentally friendly thermochemical processes and in line with circular economy principles. The developed LPWACs, activated by potassium hydroxide (KOH) at two different temperatures and weight ratios, exhibited promising textural properties with BET surface area (S) and total pore volume (V) reaching up to 1336 m·g and 0.588 cm·g, respectively.

View Article and Find Full Text PDF

Utilization of benzoic acid-based green deep eutectic solvents for the fractionation of lignocellulosic biomass.

Int J Biol Macromol

December 2024

Liaocheng Key Laboratory of High Yield Clean Pulping and Special Cultural Paper, Liaocheng 252300, China.

The fractionation of lignocellulose utilizing green solvents is essential for the effective operation of biorefineries. In this study, a deep eutectic solvent (DES) system composed of benzoic acid (BA, hydrogen bond donor) and choline chloride (ChCl, hydrogen bond acceptor) was fabricated and successfully applied to the lignocellulose fractionation. The DES has low toxicity and little pollution.

View Article and Find Full Text PDF

Xylan is one of the major hemicelluloses in plant cell walls and its xylosyl backbone is often decorated at O-2 with glucuronic acid (GlcA) and/or methylglucuronic acid (MeGlcA) residues. The GlcA/MeGlcA side chains may be further substituted with 2-O-arabinopyranose (Arap) or 2-O-galactopyranose (Gal) residues in some plant species, but the enzymes responsible for these substitutions remain unknown. During our endeavor to investigate the enzymatic activities of Arabidopsis MUR3-clade members of the GT47 glycosyltransferase family, we found that one of them was able to transfer Arap from UDP-Arap onto O-2 of GlcA side chains of xylan, and thus it was named xylan 2-O-arabinopyranosyltransferase 1 (AtXAPT1).

View Article and Find Full Text PDF

A designed ZrOCl/ethylene glycol deep eutectic solvent for efficient lignocellulose valorization.

Int J Biol Macromol

August 2024

Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China. Electronic address:

Deep eutectic solvents (DESs) hold great potential in biorefining because they can efficiently deconstruct the recalcitrant structure of lignocellulose. In particular, inorganic salts with Lewis acids have been proven to be effective at cleaving lignin-carbohydrate complexes. Herein, a Zr-based DES system composed of metal chloride hydrate (ZrOCl·8HO) and ethylene glycol (EG) was designed and used for poplar powder pretreatment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!