IL-4 expressing cells are recruited to nerve after injury and promote regeneration.

Exp Neurol

Division of Plastic and Reconstructive Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA. Electronic address:

Published: January 2022

Interleukin-4 (IL-4) has garnered interest as a cytokine that mediates regeneration across multiple tissues including peripheral nerve. Within nerve, we previously showed endogenous IL-4 was critical to regeneration across nerve gaps. Here, we determined a generalizable role of IL-4 in nerve injury and regeneration. In wild-type (WT) mice receiving a sciatic nerve crush, IL-4 expressing cells preferentially accumulated within the injured nerve compared to affected sites proximal, such as dorsal root ganglia (DRGs), or distal muscle. Immunohistochemistry and flow cytometry confirmed that eosinophils (CD45+, CD11b+, CD64-, Siglec-F+) were sources of IL-4 expression. Examination of targets for IL-4 within nerve revealed macrophages, as well as subsets of neurons expressed IL-4R, while Schwann cells expressed limited IL-4R. Dorsal root ganglia cultures were exposed to IL-4 and demonstrated an increased proportion of neurons that extended axons compared to cultures without IL-4 (control), as well as longer myelinated axons compared to cultures without IL-4. The role of endogenous IL-4 during nerve injury and regeneration in vivo was assessed following a sciatic nerve crush using IL-4 knockout (KO) mice. Loss of IL-4 affected macrophage accumulation within injured nerve compared to WT mice, as well as shifted macrophage phenotype towards a CD206- phenotype with altered gene expression. Furthermore, this loss of IL-4 delayed initial axon regeneration from the injury crush site and subsequently delayed functional recovery and re-innervation of neuromuscular junctions compared to wild-type mice. Given the role of endogenous IL-4 in nerve regeneration, exogenous IL-4 was administered daily to WT mice following a nerve crush to examine regeneration. Daily IL-4 administration increased early axonal extension and CD206+ macrophage accumulation but did not alter functional recovery compared to untreated mice. Our data demonstrate IL-4 promotes nerve regeneration and recovery after injury.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8887027PMC
http://dx.doi.org/10.1016/j.expneurol.2021.113909DOI Listing

Publication Analysis

Top Keywords

il-4
18
il-4 nerve
16
nerve
14
nerve injury
12
endogenous il-4
12
nerve crush
12
regeneration
9
il-4 expressing
8
expressing cells
8
injury regeneration
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!