Background: GDSL esterases/lipases are a large protein subfamily defined by the distinct GDSL motif, and play important roles in plant development and stress responses. However, few studies have reported on the role of GDSLs in the growth and development of axillary buds. This work aims to identify the GDSL family members in tobacco and explore whether the NtGDSL gene contributes to development of the axillary bud in tobacco.
Results: One hundred fifty-nine GDSL esterase/lipase genes from cultivated tobacco (Nicotiana tabacum) were identified, and the dynamic changes in the expression levels of 93 of these genes in response to topping, as assessed using transcriptome data of topping-induced axillary shoots, were analysed. In total, 13 GDSL esterase/lipase genes responded with changes in expression level. To identify genes and promoters that drive the tissue-specific expression in tobacco apical and axillary buds, the expression patterns of these 13 genes were verified using qRT-PCR. GUS activity and a lethal gene expression pattern driven by the NtGDSL127 promoter in transgenic tobacco demonstrated that NtGDSL127 is specifically expressed in apical buds, axillary buds, and flowers. Three separate deletions in the NtGDSL127 promoter demonstrated that a minimum upstream segment of 235 bp from the translation start site can drive the tissue-specific expression in the apical meristem. Additionally, NtGDSL127 responded to phytohormones, providing strategies for improving tobacco breeding and growth.
Conclusion: We propose that in tobacco, the NtGDSL127 promoter directs expression specifically in the apical meristem and that expression is closely correlated with axillary bud development.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8556911 | PMC |
http://dx.doi.org/10.1186/s12870-021-03278-x | DOI Listing |
Int J Biol Macromol
January 2025
School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China; Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, China. Electronic address:
The GRAS gene family, is instrumental in a myriad of biological processes, including plant growth and development. Our findings revealed that Paeonia ludlowii (Stern & G.Taylor) D.
View Article and Find Full Text PDFPhysiol Plant
January 2025
International Research Center for Environmental Membrane Biology & Department of Horticulture, Foshan University, Foshan, China.
Plant architecture and subsequent productivity are determined by the shoot apical dominance, which is disturbed by the deficiency of boron, one of the essential trace elements for plant growth and reproduction. However, the mechanism by which B controls shoot apical dominance or axillary bud outgrows under B deficiency is still unclear. This work aimed to investigate the mechanistic basis of this process, with focus on the interaction between B and polar auxin transport.
View Article and Find Full Text PDFJ Proteomics
January 2025
State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China; Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China. Electronic address:
The ability of axillary meristems to form axillary buds and subsequently develop into branches is influenced by phytohormones, environmental conditions, and genetic factors. The main trunk of Quercus fabri is prone to branching, which not only impacts the appearance and density of the wood and significantly reduces the yield rate. This study conducted transcriptomic, proteomic, and metabolomic analyses on three stages of axillary bud development in Q.
View Article and Find Full Text PDFBMC Plant Biol
December 2024
Key Laboratory of Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, Yunnan Province, China.
Background: P. yunnanensis, a distinctive economic tree species native to Yunnan Province in China, possesses axillary buds that serve as superior material for asexual propagation. However, under natural growth conditions, the differentiation of these axillary buds is notably scarce.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Institut Agro, Univ Angers, INRAE, IRHS, SFR QuaSaV, 49000 Angers, France.
The source-sink relationship is critical for proper plant growth and development, particularly for vegetative axillary buds, whose activity shapes the branching pattern and ultimately the plant architecture. Once formed from axillary meristems, axillary buds remain dormant or become active to grow into new branches. This transition is notably driven by the regulation of the bud sink strength, which is reflected in the ability to unload, metabolize and store photoassimilates.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!