Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The need to predict acoustic propagation through marine sediments that contain gas bubbles has become increasingly important for civil engineering and climate studies. There are relatively few in situ acoustic wave propagation studies of muddy intertidal sediments, in which bubbles of biogenic gas (generally methane, a potent greenhouse gas) are commonly found. We used a single experimental rig to conduct two in situ intertidal acoustical experiments to improve understanding of acoustic remote sensing of gassy sediments, eventually including gas bubble size distributions. In the first experiment, we measured sediment sound speed and attenuation between four aligned hydrophones for a quasi-plane wave propagating along the array. The second experiment involved a focused insonified sediment volume created by two transducers emitting coincident sound beams at different frequencies that generated bubble-mediated acoustic signals at combination frequencies. The results from sediment core analyses, and comparison of in situ acoustic velocity and attenuation values with those of water-saturated sediments, together provide ample evidence for the presence of in situ gas bubbles in the insonified volumes of sediments. These datasets are suitable for linear and non-linear inversion studies that estimate in situ greenhouse gas bubble populations, needed for future acoustical remote sensing applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1121/10.0006530 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!