The many faces of the E3 ubiquitin ligase, RNF220, in neural development and beyond.

Dev Growth Differ

State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.

Published: February 2022

Ubiquitin modification plays important roles in many cellular processes that are fundamental for vertebrate embryo development, such as cell division, differentiation, and migration. Aberrant function or deregulation of ubiquitination enzymes can cause developmental disorders, cancer progression, and neurodegenerative diseases in humans. RING finger protein 220 (RNF220) is an evolutionarily conserved RING-type ubiquitin E3 ligase. Recent studies have revealed the roles and mechanisms of RNF220 and its partner protein, zinc finger C4H2-type containing protein (ZC4H2), in embryonic development and human diseases. Using mouse and zebrafish models, it has been shown that RNF220 regulates sonic hedgehog (Shh) signaling via Gli and embryonic ectoderm development (EED), a polycomb repressive complex 2 (PRC2) component, during ventral neural patterning and cerebellum development. In addition, RNF220 also regulates the development and functions of central noradrenergic and motor neurons in mice. By stabilizing β-catenin and signal transducer and activator of transcription 1 (STAT1), RNF220 is also involved in Wnt and interferon (IFN)-STAT1 signaling and thus the regulation of tumorigenesis and immune response, respectively. In humans, both RNF220 and ZC4H2 mutations have been reported to be associated with diseases accompanied by complicated neural defects. In this review, we summarize the current knowledge of RNF220 with special emphasis on its roles and mechanisms of action in signal transduction, vertebrate neural development, and related human disorders.

Download full-text PDF

Source
http://dx.doi.org/10.1111/dgd.12756DOI Listing

Publication Analysis

Top Keywords

ubiquitin ligase
8
rnf220
8
neural development
8
roles mechanisms
8
development human
8
rnf220 regulates
8
development
7
faces ubiquitin
4
ligase rnf220
4
neural
4

Similar Publications

Genesis and regulation of C-terminal cyclic imides from protein damage.

Proc Natl Acad Sci U S A

January 2025

Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138.

C-Terminal cyclic imides are posttranslational modifications that can arise from spontaneous intramolecular cleavage of asparagine or glutamine residues resulting in a form of irreversible protein damage. These protein damage events are recognized and removed by the E3 ligase substrate adapter cereblon (CRBN), indicating that these aging-related modifications may require cellular quality control mechanisms to prevent deleterious effects. However, the factors that determine protein or peptide susceptibility to C-terminal cyclic imide formation or their effect on protein stability have not been explored in detail.

View Article and Find Full Text PDF

VCP controls KCC2 degradation through FAF1 recruitment and accelerates emergence from anesthesia.

Proc Natl Acad Sci U S A

January 2025

Department of Medical Neuroscience, SUSTech Center for Pain Medicine, School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China.

Ubiquitin-proteasomal degradation of K/Cl cotransporter 2 (KCC2) in the ventral posteromedial nucleus (VPM) has been demonstrated to serve as a common mechanism by which the brain emerges from anesthesia and regains consciousness. Ubiquitin-proteasomal degradation of KCC2 during anesthesia is driven by E3 ligase Fbxl4. However, the mechanism by which ubiquitinated KCC2 is targeted to the proteasome has not been elucidated.

View Article and Find Full Text PDF

Background: Bushen-Huoxue-Mingmu-Formula (MMF) has achieved definite clinical efficacy. However, its mechanism is still unclear.

Objective: Investigating the molecular mechanism of MMF to protect retinal ganglion cells (RGCs).

View Article and Find Full Text PDF

Dihydroartemisinin ameliorates skeletal muscle atrophy in the lung cancer cachexia mouse model.

J Cancer Res Ther

December 2024

Department of Medical Ultrasound, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong, People's Republic of China.

Introduction: Cancer cachexia (CC) is characterized by weight loss with specifically reduced skeletal muscles and adipose tissues in patients with late-stage cancer. Dihydroartemisinin (DHA), an effective antimalarial derivative of artemisinin, has been demonstrated to have anti-inflammatory and antitumor properties.

Materials And Methods: This study examined the effects of DHA on the Lewis lung carcinoma (LLC)-induced CC mouse model.

View Article and Find Full Text PDF

Diabetic microvascular dysfunction is evidenced by disrupted endothelial cell junctions and increased microvascular permeability. However, effective strategies against these injuries remain scarce. In this study, the type 2 diabetes mouse model was established by high-fat diet combined with streptozotocin injection in Rnd3 endothelial- specific transgenic and knockout mice.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!