Aims: Copper ion is widespread in wastewater and threatens the condition and human health. Micro-organisms have unique advantages to remove heavy-metal ions from water, but are rarely reported in the removal of copper ion. This aims to develop micro-organisms that can remove copper ion in water, characterize their properties and analyse their potential application in practice.
Methods And Results: Sewage sludge was used as the source to isolate wild bacteria that can remove copper ion in water. The most efficient strain was screened out from 23 obtained isolates, identified as Bacillus pseudomycoides and coded as C6. The properties of C6 in the removal of copper ion in water were investigated in the aspects of reaction conditions, reaction groups, reaction dynamic and the application in oat planting. The reaction at pH 7 within 10 min yielded the highest removal rate of copper ion, 83%. The presence of lead ion in the reaction system could promote the removal rate of copper ion. Carboxyl groups and amidogen of C6 biomass were mainly involved in the removal of copper ion. The removal of copper ion was in accord with single-layer adsorption and Langmuir adsorption isotherm model. In application, C6 biomass reduced the copper content in the oat seedlings grown in copper ion containing water by more than seven times.
Conclusions: B. pseudomycoides C6 can efficiently remove copper ion in water and inhibit it from entering plants.
Significance And Impact Of Study: This is the first time to report the capability of B. pseudomycoides to remove copper ion in water, which is also more efficient than the currently reported chemical and biological methods.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/jam.15343 | DOI Listing |
J Dent Sci
January 2025
Department of Fragrance and Cosmetic Science, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan.
Background/purpose: Various pulp-covering materials offer advantages in regenerative root canal treatment, but each has limitations, highlighting the need for more effective antibacterial strategies for pulp repair and regeneration. Mesoporous bioactive glasses (MBG) show significant biological activity, making them valuable in tissue/dental repair. Silver-incorporated MBG exhibits promising antibacterial effects against various bacteria; copper ions are crucial in regulating angiogenesis signals.
View Article and Find Full Text PDFCancer Pathog Ther
January 2025
Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510120, China.
Background: Long non-coding ribonucleic acids (lncRNAs) regulate messenger RNA (mRNA) expression and influence cancer development and progression. Cuproptosis, a newly discovered form of cell death, plays an important role in cancer. Nonetheless, additional research investigating the association between cuproptosis-related lncRNAs and prostate cancer (PCa) prognosis is required.
View Article and Find Full Text PDFRSC Adv
January 2025
Department of Physics, BITS Pilani-Pilani Campus RJ-333031 India
The study reports solid-state ceramic supercapacitors (SSCs) assembled using a novel composite electrolyte based on Li ion conducting perovskite-type LLTO (LiLaTiO) and an ionic liquid (EMIM BF). Small amounts of various ionic liquids (ILs) were added to LLTO to enhance the ionic conductivity and improve electrode compatibility. The optimal composition with approximately ∼6 wt% EMIM BF in LLTO exhibited a high ionic conductivity of around ∼10 Ω cm at room temperature, nearly three orders of magnitude higher than that of the pristine LLTO.
View Article and Find Full Text PDFPharm Nanotechnol
January 2025
Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, New York, United States of America.
Metallic nanostructures play a vital role in technological advancement, providing exceptional performance and improved adaptability in comparison to their bulk equivalents. Conventional synthesis techniques frequently depend on dangerous reducing agents to transform metal ions into Nanoparticles (NPs), which presents considerable environmental and health issues. In contrast, the approach of green synthesis, which emphasizes the use of non-toxic reagents, has garnered significant interest as a sustainable method for the fabrication of Metallic Nanoparticles (MNPs).
View Article and Find Full Text PDFActa Biomater
January 2025
College of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China. Electronic address:
Cuproptosis is a newly discovered mode of cell death, which is caused by excess copper and results in cell death via the mitochondrial pathway. However, the complex tumor microenvironment (TME) is characterized by many factors, including high levels of glutathione and lack O, limit the application of traditional cuproptosis agents in antitumor therapy. Herein, we report a hyaluronic acid modified copper-manganese composite nanomedicine (CMCNs@HA) to remodel the TME and facilitate efficient cuproptosis in tumor.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!