The Dehydrogenation of H-S Bond into Sulfur Species on Supported Pd Single Atoms Allows Highly Selective and Sensitive Hydrogen Sulfide Detection.

Small

Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China.

Published: December 2021

The supported metal catalysts on scaffolds usually reveal multiple active sites, resulting in the occurrence of side reaction and being detrimental to the achievement of highly consistent catalysis. Single atom catalysts (SACs), possessed with highly consistent single active sites, have great potentials for overcoming such issues. Herein, the authors used SACs to modulate kinetic process of gas sensitive reaction. The supported Pd SACs, established by a metal organic frameworks-templated approach, promoted greatly the detection capacity to hydrogen sulfide (H S) gas with a very high sensitivity and selectivity. Density functional theory calculations show that the supported Pd SACs not only increased the number of electrons transferring from H S molecules to Pd SACs, but strengthened surface affinity to H S. Moreover, the HS bonds of H S molecules absorbed on Pd atomic sites are more likely to be dehydrogenated directly into sulfur species. Significantly, quasi in situ XPS analysis confirmed the presence of sulfur species during H S detection process, which may be a major cause for such detection signal. Based on these results, a suitable sensing principle for H S gas driven by Pd SACs was put forward. This work will enrich catalytic electronics in chemiresistive gas sensing.

Download full-text PDF

Source
http://dx.doi.org/10.1002/smll.202105643DOI Listing

Publication Analysis

Top Keywords

sulfur species
12
hydrogen sulfide
8
active sites
8
highly consistent
8
supported sacs
8
sacs
6
dehydrogenation h-s
4
h-s bond
4
bond sulfur
4
supported
4

Similar Publications

ConspectusLithium-ion batteries (LIBs) based on graphite anodes are a widely used state-of-the-art battery technology, but their energy density is approaching theoretical limits, prompting interest in lithium-metal batteries (LMBs) that can achieve higher energy density. In addition, the limited availability of lithium reserves raises supply concerns; therefore, research on postlithium metal batteries is underway. A major issue with these metal anodes, including lithium, is dendritic formation and insufficient reversibility, which leads to safety risks due to short circuits and the use of flammable electrolytes.

View Article and Find Full Text PDF

Sulfur Analogs of the Core Formose Cycle: A Free Energy Map.

Life (Basel)

December 2024

Department of Chemistry & Biochemistry, University of San Diego, San Diego, CA 92110, USA.

Using computational methods, we examine if the presence of HS can tame the unruly formose reaction by generating a free energy map of the reaction thermodynamics and kinetics of sulfur analogs within the core cycle. With mercaptoaldehyde as the linchpin C species, and feeding the cycle with CHO, selected aldol additions and enolizations are kinetically more favorable. Thione formation is thermodynamically less favored compared to aldehydes and ketones, but all these species can be connected by enolization reactions.

View Article and Find Full Text PDF

Molecular and Proteomic Analyses of Effects of Cadmium Exposure on the Silk Glands of .

Int J Mol Sci

January 2025

Division of Plant Science and Technology, University of Missouri, Columbia, MO 65211, USA.

Cadmium (Cd) is a pervasive heavy metal pollutant released into the environment through industrial activities such as mining, smelting, and agricultural runoff. This study aimed to investigate the molecular and metabolic impacts of Cd exposure on the silk glands of , a species renowned for producing silk with exceptional mechanical properties. Cd accumulation in spider bodies and silk glands was significantly higher in the low- and high-Cd groups compared to controls, with a dose- and time-dependent increase.

View Article and Find Full Text PDF

Nowadays, the development of plant extracts as corrosion inhibitors to protect metals from corrosion is a popular research direction. However, given the vast diversity of plant species in nature, it is imperative to explore effective methods to improve screening efficiency in order to quickly identify the corrosion inhibition potential of plants. In this work, a new strategy for developing plant-extracted eco-friendly corrosion inhibitors based on the family and genus of plants is proposed.

View Article and Find Full Text PDF

The genus comprises important soil bacteria that are often associated with the crop rhizospheres, but its physiological traits remain poorly understood. This study characterizes sp. TT6, isolated from human skin, with a focus on its metabolic and environmental adaptations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!