Locust powder was converted into water-soluble fluorescent nitrogen-doped carbon dots (N-CDs) with gram-scale yield through a self-exothermic reaction between nitric acid and diethylenetriamine (DETA) within 10 min. The morphology, elemental information, and optical properties of the N-CDs were characterized using high-resolution transmission electron microscopy, X-ray photoelectron spectroscopy, and Fourier-transform infrared, ultraviolet-visible and fluorescence spectroscopy. Spectroscopic investigation indicated that the fluorescence emission behaviour of N-CDs is excitation wavelength dependent, with the strongest emission peak at 470 nm using a 390 nm excitation wavelength. The strong absorption peak of sunset yellow (SY) at 482 nm overlaps substantially with the blue emission peak (470 nm) of N-CDs. This enables the fluorescence emission of N-CDs to be obviously quenched by SY through the inner filter effect. There was a good linear relationship between the fluorescence quenching degree and the concentrations of SY within the range 0.5-40 μM. The detection limit of developed fluorescence assay for SY is 28 nM, and the relative standard deviation is 2.3% (c = 10 μM). The N-CDs derived from locusts by the self-exothermic reaction are highly selective and sensitive fluorescent probes for SY, which were applied to the fluorescence sensing of SY in different food samples with satisfactory results.

Download full-text PDF

Source
http://dx.doi.org/10.1002/bio.4152DOI Listing

Publication Analysis

Top Keywords

nitrogen-doped carbon
8
carbon dots
8
sunset yellow
8
food samples
8
self-exothermic reaction
8
fluorescence emission
8
excitation wavelength
8
emission peak
8
peak 470 nm
8
n-cds
6

Similar Publications

Alternatives to nonbiodegradable synthetic plastics for food packaging include films made from biopolymers that are nontoxic and environment-friendly. In this study, carnauba wax (CW) and nitrogen-doped graphene quantum dots (NG) as functional additives were utilized in the production of pectin/gelatin (PG) film. NG was synthesized through the microwave method, using acetic acid as the carbon source, giving size, and zeta potential of 1.

View Article and Find Full Text PDF

Modulating the electronic structure of noble metals via electronic metal-support interaction (EMSI) has been proven effectively for facilitating molecular oxygen activation and catalytic oxidation reactions. Nevertheless, the investigation of the fundamental mechanisms underlying activity enhancement has primarily focused on metal oxides as supports, especially in the catalytic degradation of volatile organic compounds. In this study, a novel Pt catalyst supported on nitrogen-doped carbon encapsulating FeNi alloy, featuring ultrafine Pt nanoparticles, was synthesized.

View Article and Find Full Text PDF

A novel composite containing CoS and nitrogen-doped amorphous porous carbon (NAPC), denoted as CoS@NAPC, was successfully synthesized from a mixture of cobalt-based ZIF-12 and sulfur through one-pot pyrolysis. The morphology and microstructure of the composites are evaluated with appropriate spectroscopic techniques. CoS@NAPC was used to modify the glassy carbon electrode (GCE) to detect Nilotinib.

View Article and Find Full Text PDF

Carbon monoxide (CO) is widely recognized as a significant environmental pollutant and is associated with numerous instances of accidental poisoning in humans. However, it also serves a pivotal role as a signaling molecule in plants, exhibiting functions analogous to those of other gaseous signaling molecules, including nitric oxide (NO) and hydrogen sulfide (HS). In plant physiology, CO is synthesized as an integral component of the defense mechanism against oxidative damage, particularly under abiotic stress conditions such as drought, salinity, and exposure to heavy metals.

View Article and Find Full Text PDF

Nitrogen-Doped Porous Nanofiber Aerogel-Encapsulated Staphylo-NiS Accelerating Polysulfide Conversion for Efficient Li-S Batteries.

ACS Appl Mater Interfaces

January 2025

College of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xian 710021, China.

The low conductivity of sulfur substances and the fussy effect of lithium polysulfides (LPS) limit the practical application of lithium-sulfur batteries (LSBs). In this work, NiS is in situ synthesized on N-doped 3D carbon nanofibers with an optimized pore structure as a cathode material for LSBs. The conductive carbon nanofiber skeleton with a hierarchical (micropore-mesopore-macropore) structure etched by Cd can reduce the interface resistance of the cathode and remiss volume expansion during charge-discharge progress.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!