Cartilage tissues have poor self-repairing abilities. Regenerative medicine can be applied to recover cartilage tissue damage in the oral and maxillofacial regions. However, hitherto it has not been possible to predict the maturity of the tissue construction after transplantation or to prepare mature cartilage tissues before transplantation that can meet clinical needs. Macrophages play an important role in cartilage tissue regeneration, although the exact mechanisms remain unknown. In this study, we established and verified an in vitro experimental system for the direct co-culture of cell pellets prepared from mouse auricular chondrocytes and macrophages polarized into four phenotypes (M1-like, M1, M2-like, and M2). We demonstrate that cartilage pellets co-cultured with M1-like promoted collagen type 2 and aggrecan production and induced the most significant increase in chondrogenesis. Furthermore, M1-like shifted to M2 on day 7 of co-culture, suggesting that the cartilage pellet supplied factors that changed the polarization of M1-like. Our findings suggest that cartilage regenerative medicine will be most effective if the maturation of cartilage tissues is induced in vitro by co-culture with M1-like before transplantation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8556372 | PMC |
http://dx.doi.org/10.1038/s41598-021-00232-7 | DOI Listing |
J Orthop Surg Res
January 2025
Department of Hand-Foot Microsurgery, Shenzhen Nanshan People's Hospital, The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China.
Background: Steroid-induced osteonecrosis of the femoral head (SIONFH) is a universal hip articular disease and is very hard to perceive at an early stage. The understanding of the pathogenesis of SIONFH is still limited, and the identification of efficient diagnostic biomarkers is insufficient. This research aims to recognize and validate the latent exosome-related molecular signature in SIONFH diagnosis by employing bioinformatics to investigate exosome-related mechanisms in SIONFH.
View Article and Find Full Text PDFCalcif Tissue Int
January 2025
Department of Pharmacology, Tokyo Dental College, 2-9-18, Kandamisaki-cho, Chiyoda-ku, Tokyo, 101-0061, Japan.
Hypophosphatasia (HPP) is a congenital bone disease caused by tissue-nonspecific mutations in the alkaline phosphatase gene. It is classified into six types: severe perinatal, benign prenatal, infantile, pediatric, adult, and odonto. HPP with femoral hypoplasia on fetal ultrasonography, seizures, or early loss of primary teeth can be easily diagnosed.
View Article and Find Full Text PDFAnal Chim Acta
January 2025
Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu, Taiwan; Institute of NanoEngineering and Microsystems, National Tsing Hua University, Hsinchu, Taiwan. Electronic address:
Background: Rheumatoid arthritis (RA) is a chronic autoimmune disease that causes joint damage and progressive destruction of adjacent cartilage and bones. Quick and accurate detection of rheumatoid factors (RF) and anti-cyclic citrullinated peptide antibodies (anti-CCP) in serum is effective in diagnosing RA and preventing its progression. However, current methods for detecting these two biomarkers are costly, time-consuming, labor-intensive, and require specialized equipment.
View Article and Find Full Text PDFJ ISAKOS
January 2025
Laboratory Study of Movement, Instituto de Ortopedia e Traumatologia do Hospital das Clínicas (IOT-HC), Faculdade de Medicina, Universidade de São Paulo (FMSUP), São Paulo, SP; Brazil.
Introduction: Chondromalacia patella (CMP) is characterized by cartilage degeneration, affects young adults, more women (2:1) and is responsible for 75% of knee pain complaints in the active population. The etiology is multifactorial and may be related to extrinsic factors (trauma and burden) and intrinsic factors (patellar malalignment and quadriceps weakness). Isokinetic dynamometry (ID) can aid in the detection of the causal factors of knee pain related to CMP.
View Article and Find Full Text PDFCell Genom
January 2025
Curriculum in Bioinformatics and Computational Biology, University of North Carolina, Chapel Hill, NC 27599, USA; Thurston Arthritis Research Center, University of North Carolina, Chapel Hill, NC 27599, USA; Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA; Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC 27599, USA. Electronic address:
Osteoarthritis (OA) poses a significant healthcare burden with limited treatment options. While genome-wide association studies (GWASs) have identified over 100 OA-associated loci, translating these findings into therapeutic targets remains challenging. To address this gap, we mapped gene expression, chromatin accessibility, and 3D chromatin structure in primary human articular chondrocytes in both resting and OA-mimicking conditions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!