The human ERG (hERG) K channel has a crucial function in cardiac repolarization, and mutations or channel block can give rise to long QT syndrome and catastrophic ventricular arrhythmias. The cytosolic assembly formed by the Per-Arnt-Sim (PAS) and cyclic nucleotide binding homology (CNBh) domains is the defining structural feature of hERG and related KCNH channels. However, the molecular role of these two domains in channel gating remains unclear. We have previously shown that single-chain variable fragment (scFv) antibodies can modulate hERG function by binding to the PAS domain. Here, we mapped the scFv2.12 epitope to a site overlapping with the PAS/CNBh domain interface using NMR spectroscopy and mutagenesis and show that scFv binding in vitro and in the cell is incompatible with the PAS interaction with CNBh. By generating a fluorescently labeled scFv2.12, we demonstrate that association with the full-length hERG channel is state dependent. We detect Förster resonance energy transfer (FRET) with scFv2.12 when the channel gate is open but not when it is closed. In addition, state dependence of scFv2.12 FRET signal disappears when the R56Q mutation, known to destabilize the PAS-CNBh interaction, is introduced in the channel. Altogether, these data are consistent with an extensive structural alteration of the PAS/CNBh assembly when the cytosolic gate opens, likely favoring PAS domain dissociation from the CNBh domain.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8612226PMC
http://dx.doi.org/10.1073/pnas.2108796118DOI Listing

Publication Analysis

Top Keywords

herg channel
12
pas/cnbh assembly
8
channel gating
8
pas domain
8
channel
7
herg
5
conformation-sensitive antibody
4
antibody reveals
4
reveals altered
4
altered cytosolic
4

Similar Publications

Inhibitory Effects of Cenobamate on Multiple Human Cardiac Ion Channels and Possible Arrhythmogenic Consequences.

Biomolecules

December 2024

Department of Anatomy, Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, Splaiul Independentei 91-95, 050095 Bucharest, Romania.

Cenobamate is a novel third-generation antiepileptic drug used for the treatment of focal onset seizures and particularly for multi-drug-resistant epilepsy; it acts on multiple targets: GABA receptors (EC 42-194 µM) and persistent neuronal Na currents (IC 59 µM). Side effects include QT interval shortening with >20 ms, but not <300 ms. Our in vitro cardiac safety pharmacology study was performed via whole-cell patch-clamp on HEK293T cells with persistent/inducible expression of human cardiac ion channel isoforms hNav1.

View Article and Find Full Text PDF

Pulmonary fibrosis (PF) is a progressive, fatal lung disease lacking effective treatments. Autotaxin (ATX) plays a crucial role in exacerbating inflammation and fibrosis, making it a promising target for fibrosis therapies. Herein, starting from PAT-409 (Cudetaxestat), a series of novel ATX inhibitors bearing 1-indole-3-carboxamide, 4,5,6,7-tetrahydro-7-pyrazolo[3,4-]pyridin-7-one, or 4,5,6,7-tetrahydro-1-pyrazolo[4,3-]pyridine cores were designed based on the structure of ATX hydrophobic tunnel.

View Article and Find Full Text PDF

AttenhERG: a reliable and interpretable graph neural network framework for predicting hERG channel blockers.

J Cheminform

December 2024

Insilico Medicine Shanghai Ltd, Suite 901, Tower C, Changtai Plaza, 2889 Jinke Road, Pudong New District, Shanghai, 201203, China.

Cardiotoxicity, particularly drug-induced arrhythmias, poses a significant challenge in drug development, highlighting the importance of early-stage prediction of human ether-a-go-go-related gene (hERG) toxicity. hERG encodes the pore-forming subunit of the cardiac potassium channel. Traditional methods are both costly and time-intensive, necessitating the development of computational approaches.

View Article and Find Full Text PDF

Background And Objective: In silico human models are being used more and more to predict the potential proarrhythmic risk of compounds. It has been shown that incorporation of the dynamics of drug-hERG channel interactions can have an important impact on the action potential duration (APD) at normal heart rates. Our aim is to investigate the relevance of drug dynamics on other important biomarkers of proarrhythmic risk.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!