Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Humidity-based power generation that converts internal energy of water molecules into electricity is an emerging approach for harvesting clean energy from nature. Here it is proposed that intrinsic gradient within a humidity field near sweating surfaces, such as rivers, soil, or animal skin, is a promising power resource when integrated with liquid-infused nanofluidics. Specifically, capillary-stabilized ionic liquid (IL, Omim Cl ) film is exposed to the above humidity field to create a sustained transmembrane water-content difference, which enables asymmetric ion-diffusion across the nanoconfined fluidics, facilitating long-term electricity generation with the power density of ≈12.11 µW cm . This high record is attributed to the nanoconfined IL that integrates van der Waals and electrostatic interactions to block movement of Omim clusters while allowing for directional diffusion of moisture-liberated Cl . This humidity gradient triggers large ion-diffusion flux for power generation indicates great potential of sweating surfaces considering that most of the earth is covered by water or soil.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/adma.202106410 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!