MiR-192-5p suppresses M1 macrophage polarization via epiregulin (EREG) downregulation in gouty arthritis.

Tissue Cell

Teaching and Research Section of Internal Medicine, Hebei Medical University, Shijiazhuang, Hebei, People's Republic of China; Teaching and Research Section of Endocrinology, First Hospital of Qinhuangdao, No.258, Wenhua Road, Qinhuangdao, Hebei, People's Republic of China. Electronic address:

Published: December 2021

Gouty arthritis (GA) is a chronic inflammatory disease characterized by the deposition of monosodium urate (MSU) crystals within joints. MiR-192-5p is shown to be low-expressed in GA patients. However, the potential mechanism involving miR-192-5p in GA remains unclear. In the current study, a significant reduction in miR-192-5p and an increase in epiregulin (EREG) were observed in serum of GA patients, suggesting that miR-192-5p and EREG were involved in the pathogenic process of GA. A mouse GA model was established via 0.5 mg/20 μL MSU crystal administration. To investigate the effect of miR-192-5p on GA, mice were injected with miR-192-5p agomir or NC agomir before modeling. We found that miR-192-5p overexpression induced by miR-192-5p agomir reduced EREG expression, attenuated ankle joint swelling and synovial inflammatory cell infiltration and improved bone erosion in MSU-induced GA mice. MiR-192-5p decreased CD16/32 (M1 marker) macrophages, but increased CD206 (M2 marker) expression in synovium of GA models. In vitro, RAW264.7 macrophages were stimulated with miR-192-5p mimic or NC mimic under IFNγ plus LPS-stimulated M1 polarization condition. MiR-192-5p reduced the release of inflammatory cytokines TNF-α and IL-1β, decreased iNOS expression, and inhibited CD16/32 expression, indicating the blockade of M1 macrophage activation. Luciferase reporter system revealed the target interaction between miR-192-5p and EREG. Further rescue experiments demonstrated that EREG overexpression partly reversed the inhibitory role of miR-192-5p on M1 macrophage polarization manifested by elevated iNOS and CD16/32 levels. Collectively, miR-192-5p ameliorates inflammatory response in GA by inhibiting M1 macrophage activation via inhibiting EREG protein.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.tice.2021.101669DOI Listing

Publication Analysis

Top Keywords

mir-192-5p
15
macrophage polarization
8
epiregulin ereg
8
gouty arthritis
8
mir-192-5p ereg
8
mir-192-5p agomir
8
macrophage activation
8
ereg
7
mir-192-5p suppresses
4
macrophage
4

Similar Publications

This study aimed to explore the mechanisms underlying T-cell differentiation in asthma. Flow cytometry was performed to detect Th cells. LC-MS/MS was performed to assess lipid metabolism.

View Article and Find Full Text PDF

Background: There are important inter-relationships between miRNAs and metabolites: alterations in miRNA expression can be induced by various metabolic stimuli, and miRNAs play a regulatory role in numerous cellular processes, impacting metabolism. While both specific miRNAs and metabolites have been identified for their role in childhood asthma, there has been no global assessment of the combined effect of miRNAs and the metabolome in childhood asthma.

Methods: We performed miRNAome-metabolome-wide association studies ('miR-metabo-WAS') in two childhood cohorts of asthma to evaluate the contemporaneous and persistent miRNA-metabolite associations: 1) Genetic Epidemiology of Asthma in Costa Rica Study (GACRS) (N = 1121); 2) the Childhood Asthma Management Program (CAMP) (N = 312 and N = 454).

View Article and Find Full Text PDF

Diabetic kidney disease (DKD), a.k.a diabetic nephropathy, is a leading cause of end-stage renal disease.

View Article and Find Full Text PDF

Small non-coding RNAs (sncRNAs), particularly microRNAs (miRNAs), play an important role in transcriptome regulation by binding to mRNAs and post-transcriptionally inhibiting protein production. This regulation occurs in both physiological and pathological conditions, where the expression of many miRNAs is altered. Previous reports by our group and others have demonstrated that miRNA expression is also altered during aging.

View Article and Find Full Text PDF

Objective: To corroborate the efficacy of Jintiange capsules (JTGs) in the treatment of osteoarthritis (OA) by exploring the potential mechanism of action of synovial mesenchymal stem cell exosomes (SMSC-Exos) and articular chondrocytes (ACs) through transcriptome sequencing (RNA-seq).

Methods: Type II collagenase was used to induce OA in rats. The efficacy of JTGs was confirmed by macroscopic observation of articular cartilage, micro-CT observation, and safranin fast green staining.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!