The mangrove is an ecosystem bounded by the line of the largest tide in size that occurs in climatic and subtropical regions. In this environment, microorganisms and their enzymes are involved in a series of transformations and nutrient cycling. To evaluate the biotechnological potential of fungi from a mangrove ecosystem, samples from mangrove trees were collected at the Paranaguá Estuarine Complex in Brazil and 40 fungal isolates were obtained, cultivated, and screened for hydrolytic and ligninolytic enzymes production, adaptation to salinity and genetic diversity. The results showed a predominance of hydrolytic enzymes and fungal tolerance to ≤ 50 g L sodium chloride (NaCl) concentration, a sign of adaptive halophilia. Through morphological and molecular analyses, the isolates were identified as: Trichoderma atroveride, Microsphaeropsis arundinis, Epicoccum sp., Trichoderma sp., Gliocladium sp., Geotrichum sp. and Cryphonectria sp. The ligninolytic enzymatic potential of the fungi was evaluated in liquid cultures in the presence and absence of seawater and the highest activity of laccase among isolates was observed in the presence of seawater with M. arundinis (LB07), which produced 1,037 U L. Enzymatic extracts of M. arundinis fixed at 100 U L of laccase partially decolorized a real textile effluent in a reaction without pH adjustment and chemical mediators. Considering that mangrove fungi are still few explored, the results bring an important contribution to the knowledge about these microorganisms, as their ability to adapt to saline conditions, biodegradation of pollutants, and enzymatic potential, which make them promising candidates in biotechnological processes.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.micres.2021.126899DOI Listing

Publication Analysis

Top Keywords

potential fungi
12
mangrove ecosystem
12
biotechnological potential
8
fungi mangrove
8
real textile
8
textile effluent
8
enzymatic potential
8
mangrove
5
fungi
4
enzymes
4

Similar Publications

Exploring the Frontiers of Nanopore Sequencing in Food Safety and Food Microbiology.

Annu Rev Food Sci Technol

January 2025

1Food Science and Human Nutrition Department, University of Florida, Gainesville, Florida, USA; email:

Foodborne illnesses are a significant global public health challenge, with an estimated 600 million cases annually. Conventional food microbiology methods tend to be laborious and time consuming, pose difficulties in real-time utilization, and can display subpar accuracy or typing capabilities. With the recent advancements in third-generation sequencing and microbial omics, nanopore sequencing technology and its long-read sequencing capabilities have emerged as a promising platform.

View Article and Find Full Text PDF

Codon bias, nucleotide selection, and genome size predict in situ bacterial growth rate and transcription in rewetted soil.

Proc Natl Acad Sci U S A

January 2025

Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550.

In soils, the first rain after a prolonged dry period represents a major pulse event impacting soil microbial community function, yet we lack a full understanding of the genomic traits associated with the microbial response to rewetting. Genomic traits such as codon usage bias and genome size have been linked to bacterial growth in soils-however, often through measurements in culture. Here, we used metagenome-assembled genomes (MAGs) with O-water stable isotope probing and metatranscriptomics to track genomic traits associated with growth and transcription of soil microorganisms over one week following rewetting of a grassland soil.

View Article and Find Full Text PDF

Hydrated cable bacteria exhibit protonic conductivity over long distances.

Proc Natl Acad Sci U S A

January 2025

Electronics Sciences and Technology Division, United States Naval Research Laboratory, Washington, DC 20375.

This study presents the direct measurement of proton transport along filamentous , or cable bacteria. Cable bacteria are filamentous multicellular microorganisms that have garnered much interest due to their ability to serve as electrical conduits, transferring electrons over several millimeters. Our results indicate that cable bacteria can also function as protonic conduits because they contain proton wires that transport protons at distances >100 µm.

View Article and Find Full Text PDF

Chikungunya virus (CHIKV) is an arthritogenic alphavirus that has re-emerged to cause large outbreaks of human infections worldwide. There are currently no approved antivirals for treatment of CHIKV infection. Recently, we reported that the ribonucleoside analog 4'-fluorouridine (4'-FlU) is a highly potent inhibitor of CHIKV replication, and targets the viral nsP4 RNA dependent RNA polymerase.

View Article and Find Full Text PDF

Human exposure to mycotoxins is common and often severe in underregulated maize-based food systems. This study explored how monitoring of these systems could help to identify when and where outbreaks occur and inform potential mitigation efforts. Within a maize smallholder system in Kongwa District, Tanzania, we performed two food surveys of mycotoxin contamination at local grain mills, documenting high levels of aflatoxins and fumonisins in maize destined for human consumption.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!