Musculoskeletal regeneration: A zebrafish perspective.

Biochimie

Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 59 Nanyang Drive, Singapore 636921, Singapore. Electronic address:

Published: May 2022

Musculoskeletal injuries are common in humans. The cascade of cellular and molecular events following such injuries results either in healing with functional recovery or scar formation. While fibrotic scar tissue serves to bridge between injured planes, it undermines functional integrity. Hence, faithful regeneration is the most desired outcome; however, the potential to regenerate is limited in humans. In contrast, various non-mammalian vertebrates have fascinating capabilities of regenerating even an entire appendage following amputation. Among them, zebrafish is an important and accessible laboratory model organism, sharing striking similarities with mammalian embryonic musculoskeletal development. Moreover, clinically relevant muscle and skeletal injury zebrafish models recapitulate mammalian regeneration. Upon muscle injury, quiescent stem cells - known as satellite cells - become activated, proliferate, differentiate and fuse to form new myofibres, while bone fracture results in a phased response involving hematoma formation, inflammation, fibrocartilaginous callus formation, bony callus formation and remodelling. These models are well suited to testing gene- or pharmaco-therapy for the benefit of conditions like muscle tears and fractures. Insights from further studies on whole body part regeneration, a hallmark of the zebrafish model, have the potential to complement regenerative strategies to achieve faster and desired healing following injuries without any scar formation and, in the longer run, drive progress towards the realisation of large-scale regeneration in mammals. Here, we provide an overview of the basic mechanisms of musculoskeletal regeneration, highlight the key features of zebrafish as a regenerative model and outline the relevant studies that have contributed to the advancement of this field.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biochi.2021.10.014DOI Listing

Publication Analysis

Top Keywords

musculoskeletal regeneration
8
scar formation
8
callus formation
8
zebrafish
5
formation
5
regeneration
5
musculoskeletal
4
regeneration zebrafish
4
zebrafish perspective
4
perspective musculoskeletal
4

Similar Publications

Tendon injuries and disorders associated with mechanical tendon overuse are common musculoskeletal problems. Even though tendons play a central role in human movement, the intrinsic healing process of tendon is very slow. So far, it is known that tendon cell activity is supported by several interstitial cells within the tendon.

View Article and Find Full Text PDF

The Clinical Application of Gel-Based Composite Scaffolds in Rotator Cuff Repair.

Gels

December 2024

Bio-Nanotechnology and Biomaterials (BNB) Laboratory, New York Institute of Technology, Old Westbury, NY 11568, USA.

Rotator cuff tears are a common injury that can be treated with or without surgical intervention. Gel-based scaffolds have gained significant attention in the field of tissue engineering, particularly for applications like rotator cuff repair. Scaffolds can be biological, synthetic, or a mixture of both materials.

View Article and Find Full Text PDF

Remodeling the Proinflammatory Microenvironment in Osteoarthritis through Interleukin-1 Beta Tailored Exosome Cargo for Inflammatory Regulation and Cartilage Regeneration.

ACS Nano

January 2025

National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, 29 Wangjiang Road, Chengdu 610064, P. R. China.

Osteoarthritis (OA) presents a significant therapeutic challenge, with few options for preserving joint cartilage and repairing associated tissue damage. Inflammation is a pivotal factor in OA-induced cartilage deterioration and synovial inflammation. Recently, exosomes derived from human umbilical cord mesenchymal stem cells (HucMSCs) have gained recognition as a promising noncellular therapeutic modality, but their use is hindered by the challenge of harvesting a sufficient number of exosomes with effective therapeutic efficacy.

View Article and Find Full Text PDF

The Masquelet technique that combines a foreign body reaction (FBR)-induced vascularized tissue membrane with staged bone grafting for reconstruction of segmental bone defect has gained wide attention in Orthopedic surgery. The success of Masquelet hinges on its ability to promote formation of a "periosteum-like" FBR-induced membrane at the bone defect site. Inspired by Masquelet's technique, here a novel approach is devised to create periosteum mimetics from decellularized extracellular matrix (dECM), engineered in vivo through FBR, for reconstruction of segmental bone defects.

View Article and Find Full Text PDF

High paracrine activity of hADSCs cartilage microtissues inhibits extracellular matrix degradation and promotes cartilage regeneration.

Mater Today Bio

February 2025

Institute of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, No. 51 Fucheng Road, Beijing, 100048, PR China.

Due to its unique structure, articular cartilage has limited self-repair capacity. Microtissues are tiny tissue clusters that can mimic the function of target organs or tissues. Using cells alone for microtissue construction often results in the formation of necrotic cores.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!