A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

C-X-C motif chemokine ligand 1 and its receptor C-X-C motif chemokine receptor 2 in trigeminal ganglion contribute to nerve injury-induced orofacial mechanical allodynia. | LitMetric

C-X-C motif chemokine ligand 1 and its receptor C-X-C motif chemokine receptor 2 in trigeminal ganglion contribute to nerve injury-induced orofacial mechanical allodynia.

J Oral Rehabil

State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.

Published: February 2022

Background: Orofacial ectopic pain induced by trigeminal nerve injury is a serious complication of dental treatment. C-X-C motif chemokine ligand 1 (CXCL1) and its primary receptor C-X-C motif chemokine receptor 2 (CXCR2) contribute to the development and maintenance of neuropathic pain in the spinal nervous system, but their roles in trigeminal neuropathic sensation are still poorly understood.

Objectives: This study aimed to investigate the exact role of CXCL1 and CXCR2 in the regulation of orofacial ectopic mechanical allodynia and their potential downstream mechanisms in the trigeminal ganglion (TG).

Methods: The head withdrawal threshold (HWT) of C57BL/6 mice was evaluated after inferior alveolar nerve (IAN) transection (IANX). Then, the distribution and expression of CXCL1 and CXCR2, and their potential downstream mechanisms in the TG were further measured using immunohistochemistry, real-time reverse transcription-quantitative polymerase chain reaction and Western blotting. Moreover, the effect of SB225002 (an inhibitor of CXCR2) on mechanical allodynia was examined. The data were analysed using the Student's t test and a analysis of variance (ANOVA).

Results: IANX triggered persistent (>21 days) mechanical allodynia and upregulation of CXCL1 and CXCR2 in the TG. In addition, exogenous CXCL1 also lowered the HWT, which was alleviated by CXCR2 and protein kinase C (PKC) antagonists (p < .05). In addition, IANX increased the phosphorylated PKC (p-PKC) levels and decreased the expression of voltage-gated potassium channels (Kv), and these effects were reversed by inhibition of CXCR2 (p < .05).

Conclusion: Our results demonstrated that CXCR2 participated in orofacial ectopic mechanical allodynia via downregulation of Kv1.4 and Kv1.1 through the PKC signalling pathway. This mechanism may be a potential target in developing a treatment strategy for ectopic orofacial pain.

Download full-text PDF

Source
http://dx.doi.org/10.1111/joor.13273DOI Listing

Publication Analysis

Top Keywords

c-x-c motif
16
motif chemokine
16
mechanical allodynia
16
cxcl1 cxcr2
12
chemokine ligand
8
receptor c-x-c
8
chemokine receptor
8
trigeminal ganglion
8
orofacial ectopic
8
potential downstream
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!