Introduction: Polymerization for modern dental resin-based composites (RBCs) not only occurs immediately upon light exposure but also continues for another 24 hours, well beyond after light is terminated. However, many questions still remain about the role of polymerization kinetics in optimizing the physical properties of a new RBC type-the bulk-fill.
Objective: The aim is to study the post-cure polymerization kinetics of bulk-fill RBCs and to compare their degree of polymeric conversion (DC) and depth-of-cure (DoC) with an incremental-fill, conventional RBC.
Methods: Five representative bulk-fill RBCs [Surefil SDR+Stress Decreasing Resin Flow Plus (SDRFP), Tetric EvoCeram Bulk Fill (TECB), Filtek 1 Bulk Fill (F1B), Venus Bulk Fill (VB), and Sonicfill (SF3)] and one conventional RBC [Filtek Supreme Ultra (FSU)] were investigated. The upper surface per RBC specimen was exposed to a light curing unit (Paradigm, 3M-ESPE, irradiance=1221 ± 5 mW/cm2) for 20 seconds. The DC per RBC brand were measured at the bottom surface (specimen Ø=4 mm, thickness=3 mm and 5 mm) as a function of post-curing times using a Fourier transform infrared attenuated total reflection spectrometer. Real-time data recording for post-cure DC began immediately upon light exposure and continued at steady intervals, up to15 min, then again after 24 hours. The DoC of all six RBC brands (n=6 / group) were measured according to ISO-4049. Data were analyzed with nonlinear regression and analysis of variances (ANOVA)/Tukey (α=0.05).
Results: Mean DC for the six RBCs with 5 mm curing height after 24 hours were: TECB=79.5%, VB=75.7%, SDRFP=69.2%, SF3=65.8%, F1B=51.8%, and FSU=44.0%. Bulk-fill RBCs showed higher DC efficiency than the conventional RBC for both the 3 mm and 5 mm curing heights. Significant differences in DoC were found amongst the six RBC brands: VB=5.1 mm, SDRFP=4.6 mm, F1B=3.8 mm, TECB=3.5 mm, FSU=3.0 mm, and SF3=2.7 mm.
Conclusion: DCs were more affected by specimen thickness, through which the curing light was attenuated, than RBC types. Clinician should be aware not all bulk-fill RBCs have a DoC greater than or equal to 4 mm. Also, a bulk-fill RBC that has a high DC after a post-cure time of 24 hours may not have a high DoC, which is typically measured relatively soon after light exposure.
Download full-text PDF |
Source |
---|
Saudi Dent J
October 2024
Department of Restorative and Prosthetic Dental Sciences, College of Dentistry, Dar Al Uloom University, Riyadh, Saudi Arabia.
Purpose/objectives: The aim of the study was to evaluate the effect of two distinct light-polymerization protocols, used by dental students, on the placement time and polymerization efficiency of bulk-fill (BF) and conventional (CRC) resin-based composites (RBCs).
Methods: Thirty dental students participated in this study. Each student was asked to complete four Class II RBC restorations using two different types of RBCs (BF and CRC) paired with two distinct light-polymerization protocols: one using 1200 mW/cm irradiance (P1200) and one using 800 mW/cm irradiance (P800).
Dent Mater
December 2024
Division of Dentistry, School of Medical Sciences, University of Manchester, Manchester, UK; Photon Science Institute, University of Manchester, Manchester, UK. Electronic address:
Objective: Investigate the effect of solvent-storage on surface hardness and bulk creep of fast photo-cured bulk-fill resin-based composite (RBC) compared to conventionally irradiated bulk-fill RBCs.
Methods: Three bulk-fill RBCs were studied: Tetric® PowerFill (fast photo-cured bulk-fill RBC) (TPF), Tetric EvoCeram® (EVO), and GrandioSO® x-tra (GSOx) (conventional). Disk-shaped specimens of clinically realistic thickness (4 mm) were prepared from each material for: Group A: surface measurements (18 mm diameter) and Group B: 4 mm diameter for bulk compressive creep measurements.
Dent Mater
November 2024
Biomaterials Science, Division of Dentistry, School of Medical Sciences, University of Manchester, UK; Photon Science Institute, University of Manchester, UK. Electronic address:
Objectives: To determine the short-term (5 min) initial effects of a high-irradiance light-curing (LC) protocol on light transmission (LT%), radiant exposure (RE) and degree of conversion (DC%) of different bulk-fill resin-based composites (RBCs).
Materials And Methods: Six bulk-fill composites with different viscosities were investigated: OBF (One Bulk Fill, 3 M), EB (Estelite bulkfill,Tokuyama), PFill, PFlow, ECeram and EFlow (PowerFill, Poweflow, Tetric EvoCeram bulkfill, Tetric Evoflow bulkfill, Ivoclar), subjected to different LC protocols: one ultra-high-intensity (3 W/cm -3 s via PowerCure LCU) and two conventional (1.2 W/cm -10 s and 20 s via PowerCure and Elipar S10 LCUs).
J Clin Exp Dent
July 2024
Associate Professor. Department of Dental Materials. Faculty of Dentistry, University of Pernambuco, Recife, Pernambuco, Brazil.
Background: This scoping review aims to analyze the impact of rapid high-intensity light-curing on a new bulk-fill resin-based composites (RBCs) designed for this type of polymerization.
Material And Methods: This scoping review was reported according to the Preferred Reporting Items for Systematic reviews and Meta-Analyses extension for Scoping Reviews (PRISMA-ScR) and Joanna Briggs Institute Manual of Evidence Synthesis. The methods were registered on the Open Science Framework (
Dent Mater
October 2024
Department of Restorative Dentistry and Periodontology, University of Pécs Medical School, Tüzér Street 1, 7623, Pécs, Hungary. Electronic address:
Objective: The purpose was to compare the effects of rapid (3 s) and conventional (20 s) polymerization protocols (PP) of mono- and multichip LED curing units (LCU) on shrinkage stress (SS) and monomer elution (ME) in bulk-fill resin-based composites (RBC) with and without addition-fragmentation chain-transfer (AFCT) monomer.
Methods: Cylindrical (5x4mm) specimens were prepared from two RBCs containing different AFCT monomers (Filtek OneBulk-FOB; Tetric PowerFill-TPF) and one without (Tetric EvoCeram Bulk-TEC). After soaking for 3, 10, and 14 days (75 % ethanol), ME was quantified using standard monomers by High-Performance Liquid Chromatography.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!