Objective: The automotive industry's shift toward automated vehicles allows the occupants to assume postures different from the standard upright seated position. Injury criteria assessments are needed under these nonstandard postures to advance safety. The objective of this study is to develop a new device that can position the human cadaver head-neck structures in different nonstandard pre-postures using custom devices and apply external loading anticipated in modern and future automotive and military scenarios.

Methods: An isolated head to T1 human cadaver specimen was attached to a load cell at T1. The load cell was fixed to the top of a six-degree-of-freedom custom spinal positioning device to orient the specimen such that the occipital condyle joint was in line with the torque axis of a custom angular displacement test device. The angular device converted the linear motion of a vertically oriented electro-hydraulic piston to a torque about the occipital condyle joint of the specimen. The head was pre-rotated in the axial plane, approximately 20 degrees to the left, while maintaining the coronal alignment of the lower cervical spine. Targets were secured at the head and spine (details in the body of the manuscript), and their three-dimensional positions were measured using a seven-camera optical motion capture system. Right and then left lateral bending tests were conducted. Occipital condyle joint loads were determined from the superior load cell, and the stiffness difference between the left and right lateral bending was determined.

Results: The peak coronal bending moments were 27.1 Nm and 47.6 Nm for the right and left lateral bending tests. At the time of the peak x-moment, the y moments were 1.6 and 9.1 Nm, and the z moments were 3.1 and 4.8 Nm. The head angle with respect to T1 at the time of peak x-moments was 28.1 and 27.7 deg about x, 11.0 and 11.7 deg about y, and 33.9 and 21.8 deg about z axes for the right and lateral bending tests. C1 left lateral mass fractured following the left lateral bending test.

Conclusions: The stiffness of the spine increased by approximately three times due to asymmetries in posture and loading. The present system of custom spinal positioning and angular displacement test devices and loading methodologies can be used in conjunction with a conventional piston testing apparatus to conduct additional experiments to delineate the injury patterns and mechanisms and develop injury criteria applicable to modern and future vehicle environments.

Download full-text PDF

Source
http://dx.doi.org/10.1080/15389588.2021.1982620DOI Listing

Publication Analysis

Top Keywords

left lateral
20
lateral bending
20
occipital condyle
16
condyle joint
16
load cell
12
bending tests
12
nonstandard postures
8
automated vehicles
8
injury criteria
8
human cadaver
8

Similar Publications

Emotion processing is an integral part of everyone's life. The basic neural circuits involved in emotion perception are becoming clear, though the emotion's cognitive processing remains under investigation. Utilizing the stereo-electroencephalograph with high temporal-spatial resolution, this study aims to decipher the neural pathway responsible for discriminating low-arousal and high-arousal emotions.

View Article and Find Full Text PDF

Papillary thyroid cancer (PTC) is the most frequent thyroid malignancy. Recently, the incidence has become widespread among both male and female individuals worldwide. In this article, we aim to report a 32-year-old Saudi female who presented with a painless lateral neck mass for more than seven months, and on excisional biopsy, was found to have features of PTC.

View Article and Find Full Text PDF

Purpose This study aimed to clarify which positions are beneficial for patients with pathological lung diseases, such as acute respiratory distress syndrome, by obtaining lung ventilation and deformable vector field (DVF) images using Deformable Image Registration (DIR). Methods Thirteen healthy volunteers (5 female, 8 male) provided informed consent to participate to observe changes in normal lungs. DIR imaging was processed using the B-spline algorithm to obtain BH-CTVI (inhale, exhale) in four body positions (supine, prone, right lateral, left lateral) using DIR-based breath-hold CT ventilation imaging (BH-CTVI).

View Article and Find Full Text PDF

Therapeutic Effects of Theta Burst Stimulation on Cognition Following Brain Injury.

Clin Psychopharmacol Neurosci

February 2025

Department of Psychiatry, Tri-Service General Hospital and School of Medicine, National Defense Medical Center, Taipei, Taiwan.

This case report explores the therapeutic potential of theta burst stimulation (TBS) for cognitive enhancement in individuals with brain injuries. The study presents a 38-year-old male suffering from an organic mental disorder attributed to a traumatic brain injury (TBI), who demonstrated notable cognitive improvements following an intensive TBS protocol targeting the left dorsal lateral prefrontal cortex. The treatment led to significant enhancements in impulse control, irritability, and verbal comprehension without adverse effects.

View Article and Find Full Text PDF

Anthropometric Study of Auricular Development in Human Fetal Cadavers.

J Craniofac Surg

November 2024

Department of Computer Technology and Information Systems, Erdemli School of Applied Technology and Management, Mersin University, Mersin, Turkey.

The aim of the study is to comprehensively examine the composition and localization of the auricle in formalin-fixed human fetuses during the second and third trimesters of the antenatal period. Ninety-seven auricles were evaluated (33 females and 31 males in the second, and 22 females and 11 males in the third trimester). Nine morphometric dimensions were directly measured from auricles.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!