Spin centers are promising qubits for quantum technologies. Here, we show that the acoustic manipulation of spin qubits in their electronic excited state provides an approach for coherent spin control inaccessible so far. We demonstrate a giant interaction between the strain field of a surface acoustic wave (SAW) and the excited-state spin of silicon vacancies in silicon carbide, which is about two orders of magnitude stronger than in the ground state. The simultaneous spin driving in the ground and excited states with the same SAW leads to the trapping of the spin along a direction given by the frequency detuning from the corresponding spin resonances. The coherence of the spin-trapped states becomes only limited by relaxation processes intrinsic to the ground state. The coherent acoustic manipulation of spins in the ground and excited state provides new opportunities for efficient on-chip quantum information protocols and coherent sensing.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8555898 | PMC |
http://dx.doi.org/10.1126/sciadv.abj5030 | DOI Listing |
JACS Au
December 2024
Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, IPCM, F-75005 Paris, France.
Metallogels built in a bottom-up approach by metal coordination and supramolecular interactions have important potential for the elaboration of smart materials. In this context, we present here the formation of supramolecular coordination polymers driven by the complexation of cobalt(II) or zinc(II) ions with polyoxometalate-based hybrids displaying two terpyridine ligands in a linear arrangement. Thanks to the electrostatic interactions between the polyoxometalate cores and metal nodes, the polymer chains self-assemble into fibers that physically cross-link to form gels above a critical concentration.
View Article and Find Full Text PDFACS Cent Sci
December 2024
Division of Chemistry and Chemical Engineering, Arthur Amos Noyes Laboratory of Chemical Physics, California Institute of Technology, Pasadena, California 91125, United States.
Spin-lattice relaxation constitutes a key challenge for the development of quantum technologies, as it destroys superpositions in molecular quantum bits (qubits) and magnetic memory in single molecule magnets (SMMs). Gaining mechanistic insight into the spin relaxation process has proven challenging owing to a lack of spectroscopic observables and contradictions among theoretical models. Here, we use pulse electron paramagnetic resonance (EPR) to profile changes in spin relaxation rates ( ) as a function of both temperature and magnetic field orientation, forming a two-dimensional data matrix.
View Article and Find Full Text PDFMagn Reson Med
December 2024
Department of Biomedical Engineering, University of Alberta, Edmonton, Alberta, Canada.
Purpose: The purpose of this study was to investigate microstructural changes in the aging adult prostate by comparing the effects of varying diffusion times using diffusion MRI, and to provide an age-related benchmark for future prostate cancer studies.
Methods: The prostates of normal male volunteers (n = 70, 19-69 years) were scanned at 3 T with an oscillating gradient spin echo (OGSE: 6 ms), pulsed gradient spin echo (PGSE: 40 ms) and pulsed gradient stimulated echo (PGSTE: 100 ms), and anatomical T-weighted image. Volume and mean diffusivity (MD) were measured in the peripheral (PZ) and transition zones (TZ), which were assessed versus age.
Int J Biol Macromol
December 2024
Department of Food Science, National Taiwan Ocean University, No.2, Beining Rd., Zhongzheng Dist., Keelung City 20224, Taiwan. Electronic address:
For anti-aging and whitening treatment, ascorbic acid-2-glucoside (AA2G) was incorporated into a 4.0 % (w/v) ulvan solution at three concentrations (0.5 %, 1.
View Article and Find Full Text PDFJ Hazard Mater
December 2024
Department of Environmental Engineering, Kwangwoon University, Seoul 01897, Republic of Korea; Plasma Bioscience Research Center/Department of Electrical and Biological Physics, Kwangwoon University, Seoul 01897, Republic of Korea. Electronic address:
This study investigates the removal of total organic carbon (TOC) from paper mill wastewater using air dielectric barrier discharge (DBD) plasma, combined with various persulfate sources, namely potassium peroxymonosulfate (PMS), potassium peroxydisulfate (PDS), and sodium persulfate (SPS). Mechanistic insights into the activation of plasma-PDS and -PMS were obtained through quenching experiments and electron spin resonance (ESR) techniques. The addition of persulfate to air DBD plasma increased TOC removal kinetics by approximately 1.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!