A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Cyanobacterial Toxins and Cyanopeptide Transformation Kinetics by Singlet Oxygen and pH-Dependence in Sunlit Surface Waters. | LitMetric

To assess the risks associated with cyanobacterial blooms, the persistence and fate processes of cyanotoxins and other bioactive cyanobacterial metabolites need to be evaluated. Here, we investigated the reaction with photochemically produced singlet oxygen (O) for 30 cyanopeptides synthesized by , including 9 anabaenopeptins, 18 microcystins, 2 cyanopeptolins, and 1 cyclamide. All compounds were stable in UVA light alone but in the presence of a photosensitizer we observed compound-specific degradation. A strong pH effect on the decay was observed for 18 cyanopeptides that all contained tyrosine or structurally related moieties. We can attribute this effect to the reaction with O and triplet sensitizer that preferentially react with the deprotonated form of tyrosine moieties. The contribution of O to indirect phototransformation ranged from 12 to 39% and second-order rate constants for 9 tyrosine-containing cyanopeptides were assessed. Including the pH dependence of the reaction and system-independent second-order rate constants with O will improve the estimation of half-lives for multiclass cyanopeptide in surface waters. Our data further indicates that naturally occurring triplet sensitizers are likely to oxidize deprotonated tyrosine moieties of cyanopeptides and the specific reactivity and its pH dependence needs to be investigated in future studies.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.est.1c04194DOI Listing

Publication Analysis

Top Keywords

singlet oxygen
8
surface waters
8
tyrosine moieties
8
second-order rate
8
rate constants
8
cyanobacterial toxins
4
toxins cyanopeptide
4
cyanopeptide transformation
4
transformation kinetics
4
kinetics singlet
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!