Compost as an untapped niche for thermotolerant yeasts capable of high-temperature ethanol production.

Lett Appl Microbiol

Biodiversity and Palaeobiology Group, National Fungal Culture Collection of India (NFCCI), MACS-Agharkar Research Institute, Pune, India.

Published: January 2022

Efficient bioethanol production from lignocellulosic biomass requires thermotolerant yeasts capable of utilizing multiple sugars, tolerating inhibitors and fermenting at high temperatures. In this study, 98 thermotolerant yeasts were isolated from nine compost samples. We selected 37 yeasts that belonged to 11 species; 31 grew at 45°C; 6 strains grew at 47°C, while 9 yeasts could utilize multiple sugars. Many yeast isolates showed high ethanol production in the range of 12-24 g l , with fermentation efficiencies of 47-94% at 40°C using 5% glucose. Kluyveromyces marxianus CSV3.1 and CSC4.1 (47°C), Pichia kudriavzevii CSUA9.3 (45°C) produced 21, 22 and 23 g l of ethanol with efficiencies of 83, 87 and 90%, respectively, using 5% glucose. Among these yeasts, K. marxianus CSC4.1 and P. kudriavzevii CSUA9.3 exhibited high tolerance against furfural, 5-HMF, acetic acid and ethanol. These two strains produced high amounts of ethanol from alkali-treated RS, with 84 and 87% efficiency via separate hydrolysis and fermentation; 76 and 74% via simultaneous saccharification and fermentation at 47 and 45°C, respectively. Therefore, this study demonstrates compost as a potential anthropogenic niche for multiple sugar-utilizing, inhibitor-tolerant ethanologenic yeasts suitable for high-temperature ethanol production via SHF of rice straw.

Download full-text PDF

Source
http://dx.doi.org/10.1111/lam.13593DOI Listing

Publication Analysis

Top Keywords

thermotolerant yeasts
12
ethanol production
12
yeasts capable
8
high-temperature ethanol
8
multiple sugars
8
kudriavzevii csua93
8
yeasts
7
ethanol
6
compost untapped
4
untapped niche
4

Similar Publications

The purine metabolism is crucial for cellular function and is a conserved metabolic network from prokaryotes to humans. While extensively studied in microorganisms like yeast and bacteria, the impact of perturbing dietary intermediates from the purine biosynthesis on animal development and growth remains poorly understood. We utilized Caenorhabditis elegans as the metazoan model to investigate the mechanisms underlying this deficiency.

View Article and Find Full Text PDF

Genome-wide identification of wheat USP gene family and functional dissection of TaUSP85 involved in heat tolerance.

Plant Physiol Biochem

November 2024

State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A&F University, YangLing, 712100, Shaanxi, China. Electronic address:

Article Synopsis
  • A universal stress protein (USP) family exists in a variety of species, including wheat, and is important for responding to different stress conditions such as heat and toxins.
  • Researchers discovered 88 USP genes in wheat and classified them into four distinct subfamilies, showing evolutionary conservation between monocots and dicots.
  • Experiments revealed that the TaUSP85 gene plays a crucial role in enhancing stress tolerance and silencing this gene led to adverse effects like wilting and increased damage in wheat plants, indicating the significance of USPs in plant stress responses.
View Article and Find Full Text PDF

GCN2 is a conserved receptor kinase activating the integrated stress response (ISR) in eukaryotic cells. The ISR kinases detect accumulation of stress molecules and reprogram translation from basal tasks to preferred production of cytoprotective proteins. GCN2 stands out evolutionarily among all protein kinases due to the presence of a histidyl-tRNA synthetase-like (HRSL) domain, which arises only in GCN2 and is located next to the kinase domain (KD).

View Article and Find Full Text PDF

Potentiation of Catalase-Mediated Plant Thermotolerance by N-Terminal Attachment of Solubilizing/Thermostabilizing Fusion Partners.

Int J Mol Sci

November 2024

Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, School of Life Sciences, Yunnan Normal University, Kunming 650500, China.

Catalase (CAT) plays a crucial role in plant responses to environmental stresses and maintaining redox homeostasis. However, its putative heat lability might compromise its activity and function, thus restricting plant thermotolerance. Herein, we verified Arabidopsis CAT3 was of poor thermostability that was then engineered by fusion expression in .

View Article and Find Full Text PDF

The Cryptococcus neoformans STRIPAK complex controls genome stability, sexual development, and virulence.

PLoS Pathog

November 2024

Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America.

The eukaryotic serine/threonine protein phosphatase PP2A is a heterotrimeric enzyme composed of a scaffold A subunit, a regulatory B subunit, and a catalytic C subunit. Of the four known B subunits, the B"' subunit (known as striatin) interacts with the multi-protein striatin-interacting phosphatase and kinase (STRIPAK) complex. Orthologs of STRIPAK components were identified in Cryptococcus neoformans, namely PP2AA/Tpd3, PP2AC/Pph22, PP2AB/Far8, STRIP/Far11, SLMAP/Far9, and Mob3.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!