Background: The present research was performed to assess N-heteroaryl acetic acid salts' anticancer activity against the breast cancer cell in order to introduce new inhibitory agents for histone deacetylase.

Methods And Results: A molecular docking simulation was performed to design the rational novel compounds. Afterward, the best compounds were selected for synthesis. The cytotoxic effects and mechanism of action have been studied via (Methyl Thiazol-Tetrazolium) MTT assay. Flow cytometry and gene expression analyses were performed to introduce an effective acetic acid derivative as an anticancer agent. Molecular docking simulations demonstrated that all compounds have the best interaction with histone deacetylase. The fold changes of Bcl-2, Bak, Bim, Caspase-3, and Caspase-8 gene expressions were investigated and compared with reference gene using real-time PCR. The cytotoxic studies showed the best anticancer activity of 4-benzyl-1-(carboxymethyl) pyridinium bromide (compound 2) with a low IC value (32 µM, p < 0.05). Also, the best anti HDAC activity was obtained for compound 2 with IC50 value of 1.1 µM. Furthermore, this compound showed a high percentage of apoptosis among all tested compounds after 72 h incubation which was associated with the significant increase in mRNA level of Bim, Bax, Bak, Caspase-3, and Caspase-8 and the considerable decrease in Bcl2 gene expression.

Conclusion: These results suggest that compound 2 with the benzyl ring could be an effective anticancer compound for further investigation in breast cancer treatment.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11033-021-06881-1DOI Listing

Publication Analysis

Top Keywords

anticancer activity
12
acetic acid
12
n-heteroaryl acetic
8
breast cancer
8
molecular docking
8
anticancer
4
activity n-heteroaryl
4
acid salts
4
salts breast
4
cancer silico
4

Similar Publications

Ovarian cancer is the leading cause of death among all gynecological malignancies, and drug resistance renders the current chemotherapy agents ineffective for patients with advanced metastatic tumors. We report an effective treatment strategy for targeting metastatic ovarian cancer involving a nanoformulation (Bola/IM)─bola-amphiphilic dendrimer (Bola)-encapsulated imatinib (IM)─to target the critical mediator of ovarian cancer stem cells (CSCs) CD117 (c-Kit). Bola/IM offered significantly more effective targeting of CSCs compared to IM alone, through a novel and tumor-specific β-catenin/HRP2 axis, allowing potent inhibition of cancer cell survival, stemness, and metastasis in metastatic and drug-resistant ovarian cancer cells.

View Article and Find Full Text PDF

The current research was conducted to synthesize Parietaria alsinifolia-mediated iron oxide nanoparticles (P.A@FeONPs) using the green and eco-friendly protocol. The biosynthesized P.

View Article and Find Full Text PDF

The synthesis and characterization of benzo[d]thiazol-2-amine derivatives, which were prepared by reacting benzothiazole with para-aminobenzophenone in ethanol, supplemented with glacial acetic acid. Subsequently, compound (2) was synthesized from compound (1) using NaNO, HPO, and HNO in a water-based solvent, resulting in 2-hydroxy-1-naphthaldehyde. Another derivative, compound (3), was synthesized by reacting compound (1) with vanillin under similar conditions.

View Article and Find Full Text PDF

Drugs repurposing in the experimental models of Alzheimer's disease.

Inflammopharmacology

January 2025

Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, ElKasr Elaini Street, Cairo, 11562, Egypt.

The currently approved drugs for Alzheimer's disease (AD) are only for symptomatic treatment in the early stages of the disease but they could not halt the neurodegeneration, additionally, the safety profile of the recently developed immunotherapy is a big issue. This review aims to explain the importance of the drugs repurposing technique and strategy to develop therapy for AD. We illustrated the biological alterations in the pathophysiology of AD including the amyloid pathology, the Tau pathology, oxidative stress, mitochondrial dysfunction, neuroinflammation, glutamate-mediated excitotoxicity, insulin signaling impairment, wingless-related integration site/β-catenin signaling, and autophagy.

View Article and Find Full Text PDF

Glioblastoma, with a low survival rate, is an aggressive and difficult-to-treat lethal type of brain cancer. Indomethacin (IND), a non-steroidal anti-inflammatory drug, has antitumoral activity in many cancers, including gliomas. However, its poor aqueous solubility is a critical issue.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!