Manual delineation approaches for direct imaging of the subcortex.

Brain Struct Funct

Integrative Model-Based Cognitive Neuroscience Research Unit, University of Amsterdam, Nieuwe Achtergracht 129B | Room G3.08, Postbus 15926, 1001 NK, Amsterdam, The Netherlands.

Published: January 2022

The growing interest in the human subcortex is accompanied by an increasing number of parcellation procedures to identify deep brain structures in magnetic resonance imaging (MRI) contrasts. Manual procedures continue to form the gold standard for parcellating brain structures and is used for the validation of automated approaches. Performing manual parcellations is a tedious process which requires a systematic and reproducible approach. For this purpose, we created a series of protocols for the anatomical delineation of 21 individual subcortical structures. The intelligibility of the protocols was assessed by calculating Dice similarity coefficients for ten healthy volunteers. In addition, dilated Dice coefficients showed that manual parcellations created using these protocols can provide high-quality training data for automated algorithms. Here, we share the protocols, together with three example MRI datasets and the created manual delineations. The protocols can be applied to create high-quality training data for automated parcellation procedures, as well as for further validation of existing procedures and are shared without restrictions with the research community.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8741717PMC
http://dx.doi.org/10.1007/s00429-021-02400-xDOI Listing

Publication Analysis

Top Keywords

parcellation procedures
8
brain structures
8
manual parcellations
8
high-quality training
8
training data
8
data automated
8
manual
5
protocols
5
manual delineation
4
delineation approaches
4

Similar Publications

Convolutional Neural Networks for the segmentation of hippocampal structures in postmortem MRI scans.

J Neurosci Methods

January 2025

Neuroimage Analytics Laboratory and Biggs Institute Neuroimaging Core, Glenn Biggs Institute for Neurodegenerative Disorders, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA; Research Imaging Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA. Electronic address:

Background: The hippocampus plays a crucial role in memory and is one of the first structures affected by Alzheimer's disease. Postmortem MRI offers a way to quantify the alterations by measuring the atrophy of the inner structures of the hippocampus. Unfortunately, the manual segmentation of hippocampal subregions required to carry out these measures is very time-consuming.

View Article and Find Full Text PDF

Clinical Manifestations.

Alzheimers Dement

December 2024

Ewha Womans University Mokdong Hospital, Ewha Womans University College of Medicine, Seoul, Korea, Republic of (South).

Background: Cognitive abilities, notably memory, typically decline with age, but a subset of individuals known as superagers defy this trend by exhibiting memory functions akin to those 20-30 years younger in late life. Recognizing the interconnection between physical performance, health outcomes, and cognitive function in older adults, our aim was to explore whether superagers demonstrate superior physical performance compared to typical agers.

Methods: Forty-nine cognitively unimpaired older adults underwent comprehensive assessments, including cognitive function tests using the Seoul Neuropsychological Screening Battery, Brain MRI, and the Short Physical Performance Battery (SPPB), a prominent tool for evaluating physical function.

View Article and Find Full Text PDF

Advances in the fMRI analysis of the default mode network: a review.

Brain Struct Funct

December 2024

Departamento de Psicobiología y Metodología en Ciencias del Comportamiento, Facultad de Psicología, Universidad Complutense de Madrid, Pozuelo de Alarcón, 28223, Madrid, Spain.

The default mode network (DMN) is a singular pattern of synchronization between brain regions, usually observed using resting-state functional magnetic resonance imaging (rs-fMRI) and functional connectivity analyses. In comparison to other brain networks that are primarily involved in attentional-demanding tasks (such as the frontoparietal network), the DMN is linked with self-referential activities, and alterations in its pattern of connectivity have been related to a wide range of disorders. Structural connectivity analyses have highlighted the vital role of the posterior cingulate cortex and the precuneus as integrative hubs, and advanced parcellation methods have further contributed to elucidate the DMN's regions, enriching its explanatory potential across cognitive functions and dysfunctions.

View Article and Find Full Text PDF

Background: Alzheimer's disease (AD) is characterized by cerebral amyloid plaques and neurofibrillary tangles and disruption of large-scale brain networks (LSBNs). Transcranial magnetic stimulation (TMS) has emerged as a potential non-invasive AD treatment that may serve as an adjunct therapy with FDA approved medications.

Methods: We conducted a 10-subject open label, single site study evaluating the effect of functional connectivity-resting state functional MRI guided-approach to TMS targeting with dysfunctional LSBNs in subjects with biomarker-confirmed early-stage AD (https://clinicaltrials.

View Article and Find Full Text PDF

Automated White Matter Fiber Tract Segmentation for the Brainstem.

NMR Biomed

February 2025

Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China.

This study aimed to develop an automatic segmentation method for brainstem fiber bundles. We utilized the brainstem as a seed region for probabilistic tractography based on multishell, multitissue constrained spherical deconvolution in 40 subjects from the Human Connectome Project (HCP). All tractography data were registered into a common space to construct a brainstem fiber cluster atlas.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!