A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionm1pk3jufikohsvgilb5lqeav4j45o2pi): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 143

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3098
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: Attempt to read property "Count" on bool

Filename: helpers/my_audit_helper.php

Line Number: 3100

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3100
Function: _error_handler

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Deep Learning Analysis of Polaritonic Wave Images. | LitMetric

AI Article Synopsis

  • Deep learning (DL) is increasingly used in scientific and engineering fields, particularly for analyzing large imaging data sets.
  • The researchers applied a convolutional neural network (CNN) to analyze nanoscale images of polaritonic waves, creating a method to quickly quantify wavelengths and quality factors.
  • Their CNN-based protocol significantly speeds up data processing—at least 1,000 times faster than traditional methods—and has been validated using experimental images from specific material interfaces.

Article Abstract

Deep learning (DL) is an emerging analysis tool across the sciences and engineering. Encouraged by the successes of DL in revealing quantitative trends in massive imaging data, we applied this approach to nanoscale deeply subdiffractional images of propagating polaritonic waves in complex materials. Utilizing the convolutional neural network (CNN), we developed a practical protocol for the rapid regression of images that quantifies the wavelength and the quality factor of polaritonic waves. Using simulated near-field images as training data, the CNN can be made to simultaneously extract polaritonic characteristics and material parameters in a time scale that is at least 3 orders of magnitude faster than common fitting/processing procedures. The CNN-based analysis was validated by examining the experimental near-field images of charge-transfer plasmon polaritons at graphene/α-RuCl interfaces. Our work provides a general framework for extracting quantitative information from images generated with a variety of scanning probe methods.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsnano.1c07011DOI Listing

Publication Analysis

Top Keywords

deep learning
8
polaritonic waves
8
near-field images
8
images
6
learning analysis
4
polaritonic
4
analysis polaritonic
4
polaritonic wave
4
wave images
4
images deep
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!