A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

[Research on high-efficiency electrocardiogram automatic classification based on autoregressive moving average model fitting]. | LitMetric

[Research on high-efficiency electrocardiogram automatic classification based on autoregressive moving average model fitting].

Sheng Wu Yi Xue Gong Cheng Xue Za Zhi

School of Electrical Engineering, Sichuan University, Chengdu 610065, P.R.China.

Published: October 2021

The automatic detection of arrhythmia is of great significance for the early prevention and diagnosis of cardiovascular diseases. Traditional arrhythmia diagnosis is limited by expert knowledge and complex algorithms, and lacks multi-dimensional feature representation capabilities, which is not suitable for wearable electrocardiogram (ECG) monitoring equipment. This study proposed a feature extraction method based on autoregressive moving average (ARMA) model fitting. Different types of heartbeats were used as model inputs, and the characteristic of fast and smooth signal was used to select the appropriate order for the arrhythmia signal to perform coefficient fitting, and complete the ECG feature extraction. The feature vectors were input to the support vector machine (SVM) classifier and K-nearest neighbor classifier (KNN) for automatic ECG classification. MIT-BIH arrhythmia database and MIT-BIH atrial fibrillation database were used to verify in the experiment. The experimental results showed that the feature engineering composed of the fitting coefficients of the ARMA model combined with the SVM classifier obtained a recall rate of 98.2% and a precision rate of 98.4%, and the index was 98.3%. The algorithm has high performance, meets the needs of clinical diagnosis, and has low algorithm complexity. It can use low-power embedded processors for real-time calculations, and it's suitable for real-time warning of wearable ECG monitoring equipment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9927429PMC
http://dx.doi.org/10.7507/1001-5515.202101054DOI Listing

Publication Analysis

Top Keywords

based autoregressive
8
autoregressive moving
8
moving average
8
ecg monitoring
8
monitoring equipment
8
feature extraction
8
arma model
8
svm classifier
8
feature
5
[research high-efficiency
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!