This personal account focuses on synthesis of polyhydroxylated piperidines, a subset of compounds within the iminosugar family. Cyclisations to form the piperidine ring include reductive amination, substitution via amines, iminium ions and cyclic nitrones, transamidification (N-acyl transfer), addition to alkenes, ring contraction and expansion, photoinduced electron transfer, multicomponent Ugi reaction and ring closing metathesis. Enantiomerically pure piperidines are obtained from chiral pool precursors (e. g. sugars, amino acids, Garner's aldehyde) or asymmetric reactions (e. g. epoxidation, dihydroxylation, aminohydroxylation, aldol, biotransformation). Our laboratory have contributed cascades based on reductive amination from glycosyl azide precursors as well as Huisgen azide-alkene cycloaddition. The latter's combination with allylic azide rearrangement has given substituted piperidines, including those with quaternary centres adjacent to nitrogen.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/tcr.202100221 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!