This study investigated the regulation of GRP78 in tumour-associated macrophage polarization in lung cancer. First, our results showed that GRP78 was upregulated in macrophages during M2 polarization and in a conditioned medium derived from lung cancer cells. Next, we found that knocking down GRP78 in macrophages promoted M1 differentiation and suppressed M2 polarization via the Janus kinase/signal transducer and activator of transcription signalling. Moreover, conditioned medium from GRP78- or insulin-like growth factor 1-knockdown macrophages attenuated the survival, proliferation, and migration of lung cancer cells, while conditioned medium from GRP78-overexpressing macrophages had the opposite effects. Additionally, GRP78 knockdown reduced both the secretion of insulin-like growth factor 1 and the phosphorylation of the insulin-like growth factor 1 receptor. Interestingly, insulin-like growth factor 1 neutralization downregulated GRP78 and suppressed GRP78 overexpression-induced M2 polarization. Mechanistically, insulin-like growth factor 1 treatment induced the translocation of GRP78 to the plasma membrane and promoted its association with the insulin-like growth factor 1 receptor. Finally, IGF-1 blockade and knockdown as well as GRP78 knockdown in macrophages inhibited M2 macrophage-induced survival, proliferation, and migration of lung cancer cells both in vitro and in vivo.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11072571 | PMC |
http://dx.doi.org/10.1007/s00018-021-03997-2 | DOI Listing |
J Ren Nutr
January 2025
Departments of Nephrology - Dialysis - Transplantation, University of Liege, CHU de Liège, Liège, Belgium; Nephrology, Dialysis, Apheresis Unit, Centre Hospitalier Universitaire Caremeau, Nimes, University of Montpellier, Montpellier, France.
Background And Aims: Frailty is common among hemodialysis (HD) patients. Its assessment is usually based on clinical criteria. In the present work, we evaluated the interest of combining clinical frailty score and biomarkers to predict mortality of chronic HD patients.
View Article and Find Full Text PDFJ Physiol
January 2025
Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK.
The mechanisms that drive placental dysfunction in pregnancies complicated by hypoxia and fetal growth restriction remain poorly understood. Changes to mitochondrial respiration contribute to cellular dysfunction in conditions of hypoxia and have been implicated in the pathoaetiology of pregnancy complications, such as pre-eclampsia. We used bespoke isobaric hypoxic chambers and a combination of functional, molecular and imaging techniques to study cellular metabolism and mitochondrial dynamics in sheep undergoing hypoxic pregnancy.
View Article and Find Full Text PDFFront Immunol
January 2025
Xin'an Medicine Research Center, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital), Wuhu, China.
Background: is a differentially expressed gene (DEG) between M1 and M2 macrophages. This study explained why it causes opposite effects in different circumstances.
Methods: Gene expression profiles of various cell subsets were compared by mining a public database.
Endocrinology
January 2025
Key Laboratory of Bio-resources and Eco-environment of the Ministry of Education, College of Life Sciences, 610065, Sichuan University, Chengdu, P.R. China.
Low temperatures significantly impact growth in ectothermic vertebrates, though the underlying mechanisms remain poorly understood. This study investigates the role of transient receptor potential ankyrin 1 (TRPA1) channels in mediating low temperature effects on growth performance and growth hormone (GH) resistance in Nile tilapia (Oreochromis niloticus). Prolonged exposure to low temperature (16°C for 35 days) impaired growth performance and induced GH resistance, characterized by elevated serum GH levels and decreased insulin-like growth factor-1 (IGF-1) levels.
View Article and Find Full Text PDFAging (Albany NY)
January 2025
School of Medicine, National University of La Plata (UNLP), La Plata, Argentina.
In middle-aged (MA) female rats, we have demonstrated that intrahypothalamic gene therapy for insulin-like growth factor-I (IGF-I) extends the regular cyclicity of the animals beyond 10 months (the age at which MA rats stop ovulating). Here, we implemented long-term OSKM gene therapy in the hypothalamus of young female rats. The main goal was to extend fertility in the treated animals.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!