Monogenic neurological disorders are devastating, affecting hundreds of millions of people globally and present a substantial burden to individuals, carers, and healthcare systems. These disorders are predominantly caused by inherited or variants that result in impairments to nervous system development, neurodegeneration, or impaired neuronal function. No cure exists for these disorders with many being refractory to medication. However, since monogenic neurological disorders have a single causal factor, they are also excellent targets for innovative, therapies such as gene therapy. Despite this promise, gene transfer therapies are limited in that they are only suitable for neurogenetic disorders that fit within the technological reach of these therapies. The limitations include the size of the coding region of the gene, the regulatory control of expression (dosage sensitivity), the mode of expression (e.g., dominant negative) and access to target cells. Gene editing therapies are an alternative strategy to gene transfer therapy as they have the potential of overcoming some of these hurdles, enabling the retention of physiological expression of the gene and offers precision medicine-based therapies where individual variants can be repaired. This review focusses on the existing gene editing technologies for neurogenetic disorders and how these propose to overcome the challenges common to neurogenetic disorders with gene transfer therapies as well as their own challenges.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8525368 | PMC |
http://dx.doi.org/10.3389/fgeed.2021.623519 | DOI Listing |
Clin Neuropsychol
January 2025
Center for Neurological Restoration, Neurological Institute, Cleveland Clinic, Cleveland, OH, USA.
Despite significant progress in understanding the factors influencing cognitive function in Parkinson's disease (PD), there is a notable gap in data representation for the Latinx population. This study aims to evaluate the contributors to and disparities in cognitive performance among Latinx patients with PD. A retrospective analysis was conducted based on cross-sectional data encompassing demographic, environmental, motor, and non-motor disease characteristics from the Latin American Research Consortium on the Genetics of PD (LARGE-PD) and the Parkinson's Progression Markers Initiative (PPMI) cohorts.
View Article and Find Full Text PDFNat Med
January 2025
Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands.
Genetic diagnosis of rare diseases requires accurate identification and interpretation of genomic variants. Clinical and molecular scientists from 37 expert centers across Europe created the Solve-Rare Diseases Consortium (Solve-RD) resource, encompassing clinical, pedigree and genomic rare-disease data (94.5% exomes, 5.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, China.
Fragile X syndrome (FXS) is an inherited neurodevelopmental disorder characterized by a range of clinical manifestations with no effective treatment strategy to date. Here, transplantation of GABAergic precursor cells from the medial ganglionic eminence (MGE) is demonstrated to significantly improve cognitive performance in Fmr1 knockout (KO) mice. Within the hippocampus of Fmr1-KO mice, MGE-derived cells from wild-type donor mice survive, migrate, differentiate into functionally mature interneurons, and form inhibitory synaptic connections with host pyramidal neurons.
View Article and Find Full Text PDFFEBS J
January 2025
Greg Marzolf Jr. Muscular Dystrophy Center and Department of Neurology, University of Minnesota Medical School, Minneapolis, MN, USA.
Pathogenic variants in HMGCR were recently linked to a limb-girdle muscular dystrophy (LGMD) phenotype. The protein product HMG CoA reductase (HMGCR) catalyzes a key component of the cholesterol synthesis pathway. The two other muscle diseases associated with HMGCR, statin-associated myopathy (SAM) and autoimmune anti-HMGCR myopathy, are not inherited in a Mendelian pattern.
View Article and Find Full Text PDFAm J Med Genet A
January 2025
Department of Molecular Medicine, University of Pavia, Pavia, Italy.
Hypertrophic cardiomyopathy (HCM) is rare in childhood, but it is associated with significant morbidity and mortality. Genetic causes of HCM are mostly related to sarcomeric genes abnormalities; however, syndromic, metabolic, and mitochondrial disorders play an important role in its etiopathogenesis in pediatric patients. We here describe a new case of apparently isolated HCM due to mitochondrial assembly factor gene NDUFAF1 biallelic variants (c.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!