AI Article Synopsis

  • COVID-19 necessitated quick changes in healthcare delivery, with Brazil's universal health system (SUS) at risk of saturation due to rising case numbers.
  • The study examines the Laura Digital Emergency Room, an AI-powered telehealth platform, which processed 130,000 interactions and triaged over 24,000 patients, revealing most had mild or moderate symptoms.
  • The findings suggest that AI telehealth can enhance accessibility and reduce healthcare overload in Brazil, indicating a need for sustainable, affordable solutions in similar contexts.

Article Abstract

The novel coronavirus disease (COVID-19) forced rapid adaptations in the way healthcare is delivered and coordinated by health systems. Brazil has a universal public health system (Sistema Unico de Saúde-SUS), being the main source of care for 75% of the population. Therefore, a saturation of the system was foreseen with the continuous increase of cases. The use of Artificial Intelligence (AI) to empower telehealth could help to tackle this by increasing a coordinated patient access to the health system. In the present study we describe a descriptive case report analyzing the use of Laura Digital Emergency Room-an AI-powered telehealth platform-in three different cities. It was computed around 130,000 interactions made by the chatbot and 24,162 patients completed the digital triage. Almost half (44.8%) of the patients were classified as having mild symptoms, 33.6% were classified as moderate and only 14.2% were classified as severe. The implementation of an AI-powered telehealth to increase accessibility while maintaining safety and leveraging value amid the unprecedent impact of the COVID-19 pandemic was feasible in Brazil and may reduce healthcare overload. New efforts to yield sustainability of affordable and scalable solutions are needed to truly leverage value in health care systems, particularly in the context of middle-low-income countries.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8521842PMC
http://dx.doi.org/10.3389/fdgth.2021.648585DOI Listing

Publication Analysis

Top Keywords

artificial intelligence
8
health system
8
ai-powered telehealth
8
covid-19 brazil-preliminary
4
brazil-preliminary analysis
4
analysis response
4
response supported
4
supported artificial
4
intelligence municipalities
4
municipalities novel
4

Similar Publications

Atemoya fruit deteriorates rapidly during post-harvest storage. A complete understanding of the metabolic mechanisms underlying this process is crucial for developing effective preservation strategies. Metabolomic approaches combined with machine learning offer new opportunities to identify quality-related biomarkers.

View Article and Find Full Text PDF

Predicting phage-host interactions via feature augmentation and regional graph convolution.

Brief Bioinform

November 2024

Hubei Provincial Key Laboratory of Artificial Intelligence and Smart Learning, Central China Normal University, Wuhan 430079, China.

Identifying phage-host interactions (PHIs) is a crucial step in developing phage therapy, which is the promising solution to addressing the issue of antibiotic resistance in superbugs. However, the lifestyle of phages, which strongly depends on their host for life activities, limits their cultivability, making the study of predicting PHIs time-consuming and labor-intensive for traditional wet lab experiments. Although many deep learning (DL) approaches have been applied to PHIs prediction, most DL methods are predominantly based on sequence information, failing to comprehensively model the intricate relationships within PHIs.

View Article and Find Full Text PDF

Weighted Echo State Graph Neural Networks Based on Robust and Epitaxial Film Memristors.

Adv Sci (Weinh)

January 2025

College of Physics Science & Technology, School of Life Sciences, Institute of Life Science and Green Development, Key Laboratory of Brain-Like Neuromorphic Devices and Systems of Hebei Province, Hebei University, Baoding, 071002, China.

Hardware system customized toward the demands of graph neural network learning would promote efficiency and strong temporal processing for graph-structured data. However, most amorphous/polycrystalline oxides-based memristors commonly have unstable conductance regulation due to random growth of conductive filaments. And graph neural networks based on robust and epitaxial film memristors can especially improve energy efficiency due to their high endurance and ultra-low power consumption.

View Article and Find Full Text PDF

The COVID-19 pandemic provided an ideal scenario for studying the care of the elderly population, we implemented a tool named the Geriatric Measure (GM) tool to determine the severity and need for hospitalization. The objective of the study is to evaluate if the results of a brief Geriatric Measure tool are associated with mortality and other outcomes among older adults with COVID-19 treated in the emergency department. Retrospective observational cohort study.

View Article and Find Full Text PDF

Machine learning techniques for non-destructive estimation of plum fruit weight.

Sci Rep

January 2025

Crop and Horticultural Science Research Department, Mazandaran Agricultural Resources Research and Education Center, Agricultural Research, Education and Extension Organization (AREEO), Tajrish, Iran.

Plum fruit fresh weight (FW) estimation is crucial for various agricultural practices, including yield prediction, quality control, and market pricing. Traditional methods for estimating fruit weight are often destructive, time-consuming, and labor-intensive. In this study, we addressed the problem of predicting plum FW using artificial intelligence (AI) methods based on fruit dimensions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!