Epilepsy affects 50 million people worldwide and a third are refractory to medication. If a discrete cerebral focus or network can be identified, neurosurgical resection can be curative. Most excisions are in the temporal-lobe, and are more likely to result in seizure-freedom than extra-temporal resections. However, less than half of patients undergoing surgery become entirely seizure-free. Localizing the epileptogenic-zone and individualized outcome predictions are difficult, requiring detailed evaluations at specialist centers. We used bespoke natural language processing to text-mine 3,800 electronic health records, from 309 epilepsy surgery patients, evaluated over a decade, of whom 126 remained entirely seizure-free. We investigated the diagnostic performances of machine learning models using set-of-semiology (SoS) with and without hippocampal sclerosis (HS) on MRI as features, using STARD criteria. Support Vector Classifiers (SVC) and Gradient Boosted (GB) decision trees were the best performing algorithms for temporal-lobe epileptogenic zone localization (cross-validated Matthews correlation coefficient (MCC) SVC 0.73 ± 0.25, balanced accuracy 0.81 ± 0.14, AUC 0.95 ± 0.05). Models that only used seizure semiology were not always better than internal benchmarks. The combination of multimodal features, however, enhanced performance metrics including MCC and normalized mutual information (NMI) compared to either alone ( < 0.0001). This combination of semiology and HS on MRI increased both cross-validated MCC and NMI by over 25% (NMI, SVC SoS: 0.35 ± 0.28 vs. SVC SoS+HS: 0.61 ± 0.27). Machine learning models using only the set of seizure semiology (SoS) cannot unequivocally perform better than benchmarks in temporal epileptogenic-zone localization. However, the combination of SoS with an imaging feature (HS) enhance epileptogenic lobe localization. We quantified this added NMI value to be 25% in absolute terms. Despite good performance in localization, no model was able to predict seizure-freedom better than benchmarks. The methods used are widely applicable, and the performance enhancements by combining other clinical, imaging and neurophysiological features could be similarly quantified. Multicenter studies are required to confirm generalizability. Wellcome/EPSRC Center for Interventional and Surgical Sciences (WEISS) (203145Z/16/Z).

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8521800PMC
http://dx.doi.org/10.3389/fdgth.2021.559103DOI Listing

Publication Analysis

Top Keywords

machine learning
12
localizing epileptogenic-zone
8
entirely seizure-free
8
learning models
8
seizure semiology
8
nmi 25%
8
better benchmarks
8
learning localizing
4
epileptogenic-zone temporal
4
temporal lobe
4

Similar Publications

Who is coming in? Evaluation of physician performance within multi-physician emergency departments.

Am J Emerg Med

January 2025

Department of Emergency Medicine, Yale University School of Medicine, New Haven, CT, USA; Center for Outcomes Research and Evaluation, Yale University, New Haven, CT, USA.

Background: This study aimed to examine how physician performance metrics are affected by the speed of other attendings (co-attendings) concurrently staffing the ED.

Methods: A retrospective study was conducted using patient data from two EDs between January-2018 and February-2020. Machine learning was used to predict patient length of stay (LOS) conditional on being assigned a physician of average speed, using patient- and departmental-level variables.

View Article and Find Full Text PDF

Background: Large language models (LLMs) have been proposed as valuable tools in medical education and practice. The Chinese National Nursing Licensing Examination (CNNLE) presents unique challenges for LLMs due to its requirement for both deep domain-specific nursing knowledge and the ability to make complex clinical decisions, which differentiates it from more general medical examinations. However, their potential application in the CNNLE remains unexplored.

View Article and Find Full Text PDF

Prediction of Thermodynamic Properties of C-Based Fullerenols Using Machine Learning.

J Chem Theory Comput

January 2025

Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, School of Pharmacy, Guizhou Medical University, Guiyang, Guizhou 550025, P. R. China.

Traditional machine learning methods face significant challenges in predicting the properties of highly symmetric molecules. In this study, we developed a machine learning model based on graph neural networks (GNNs) to accurately and swiftly predict the thermodynamic and photochemical properties of fullerenols, such as C(OH) ( = 1 to 30). First, we established a global method for generating fullerenol isomers through isomer fingerprinting, which can generate all possible isomers or produce diverse structural types on demand.

View Article and Find Full Text PDF

This study investigates the geochemical characteristics of rare earth elements (REEs) in highland karstic bauxite deposits located in the Sierra de Bahoruco, Pedernales Province, Dominican Republic. These deposits, formed through intense weathering of volcanic material, represent a potentially valuable REE resource for the nation. Surface and subsurface soil samples were analyzed using portable X-ray fluorescence (pXRF) and a NixPro 2 color sensor validated with inductively coupled plasma optical emission spectrometry (ICP-OES).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!