The study aimed to identify different molds that grow on various food surfaces. As a result, we conducted a case study for the detection of mold on food surfaces based on the "you only look once (YOLO) v5" principle. In this context, a dataset of 2050 food images with mold growing on their surfaces was created. Images were obtained from our own laboratory (850 images) as well as from the internet (1200 images). The dataset was trained using the pre-trained YOLOv5 algorithm. A laboratory test was also performed to confirm that the grown organisms were mold. In comparison to YOLOv3 and YOLOv4, this current YOLOv5 model had better precision, recall, and average precision (AP), which were 98.10%, 100%, and 99.60%, respectively. The YOLOv5 algorithm was used for the first time in this study to detect mold on food surfaces. In conclusion, the proposed model successfully recognizes any kind of mold present on the food surface. Using YOLOv5, we are currently conducting research to identify the specific species of the detected mold.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8529025PMC
http://dx.doi.org/10.1016/j.crfs.2021.10.003DOI Listing

Publication Analysis

Top Keywords

mold food
16
food surfaces
12
detection mold
8
food surface
8
surface yolov5
8
yolov5 algorithm
8
food
6
mold
6
yolov5
5
yolov5 study
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!