A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

3D point cloud lossy compression using quadric surfaces. | LitMetric

3D point cloud lossy compression using quadric surfaces.

PeerJ Comput Sci

Computer Sciences Department, College of Computer and Information Sciences, Princess Nourah bint Abdulrahman University (PNU), Riyadh, Sudia Arabia.

Published: October 2021

The presence of 3D sensors in hand-held or head-mounted smart devices has motivated many researchers around the globe to devise algorithms to manage 3D point cloud data efficiently and economically. This paper presents a novel lossy compression technique to compress and decompress 3D point cloud data that will save storage space on smart devices as well as minimize the use of bandwidth when transferred over the network. The idea presented in this research exploits geometric information of the scene by using quadric surface representation of the point cloud. A region of a point cloud can be represented by the coefficients of quadric surface when the boundary conditions are known. Thus, a set of quadric surface coefficients and their associated boundary conditions are stored as a compressed point cloud and used to decompress. An added advantage of proposed technique is its flexibility to decompress the cloud as a dense or a course cloud. We compared our technique with state-of-the-art 3D lossless and lossy compression techniques on a number of standard publicly available datasets with varying the structure complexities.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8507489PMC
http://dx.doi.org/10.7717/peerj-cs.675DOI Listing

Publication Analysis

Top Keywords

point cloud
24
lossy compression
12
quadric surface
12
smart devices
8
cloud data
8
boundary conditions
8
cloud
7
point
6
cloud lossy
4
quadric
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!