Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Diabetic retinopathy (DR) is a prevalent vision-threatening disease worldwide. Laser marks are the scars left after panretinal photocoagulation, a treatment to prevent patients with severe DR from losing vision. In this study, we develop a deep learning algorithm based on the lightweight U-Net to segment laser marks from the color fundus photos, which could help indicate a stage or providing valuable auxiliary information for the care of DR patients. We prepared our training and testing data, manually annotated by trained and experienced graders from Image Reading Center, Zhongshan Ophthalmic Center, publicly available to fill the vacancy of public image datasets dedicated to the segmentation of laser marks. The lightweight U-Net, along with two postprocessing procedures, achieved an AUC of 0.9824, an optimal sensitivity of 94.16%, and an optimal specificity of 92.82% on the segmentation of laser marks in fundus photographs. With accurate segmentation and high numeric metrics, the lightweight U-Net method showed its reliable performance in automatically segmenting laser marks in fundus photographs, which could help the AI assist the diagnosis of DR in the severe stage.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8548126 | PMC |
http://dx.doi.org/10.1155/2021/8766517 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!