The study aimed to explore the accuracy and stability of Deep metric learning (DML) algorithm in Magnetic Resonance Imaging (MRI) examination of Alzheimer's Disease (AD) patients. In this study, MRI data of patients obtained were from Alzheimer's Disease Neuroimaging Initiative (ADNI) database (A total of 180 AD cases, 88 women, 92 men; 188 samples in healthy conditions (HC), including 90 females and 98 males. 210 samples of mild cognitive impairment (MCI), 104 females and 106 males). On the basis of deep learning, an early AD diagnosis system was constructed using CNN (Convolutional Neural Network) and DML algorithms. Then, the system was used to classify AD, HC, and MCI, and the two algorithms were compared for the accuracy and stability of in classification of MRI images. It was found that in the classification of AD and HC, the classification accuracy and sensitivity of the deep measurement learning model are both 0.83, superior to the CNN model; in terms of specificity, the classification specificity of the DML model was 0.82, slightly lower than that of the CNN model; and that in the classification of MCI and HC, the classification accuracy and sensitivity of the DML model was 0.65, superior to the CNN model; and in terms of specificity, the classification specificity of the DML model was 0.66, slightly lower than that of the CNN model. It suggested that the DML model demonstrated better classification effects on early AD patients. The loss curve analysis results showed that, for classification of AD and HC or MCI and HC, the DML algorithm can improve the convergence speed of the AD early prediction model. Therefore, the DML algorithm can significantly improve the clarity and quality of MRI images, elevate the classification accuracy and stability of early AD patients, and accelerate the convergence of the model, providing a new way for early prediction of AD.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8548180 | PMC |
http://dx.doi.org/10.1155/2021/8198552 | DOI Listing |
Sci Rep
January 2025
Department of Electrical Electronical Engineering, Yaşar University, Bornova, İzmir, Turkey.
We aimed to build a robust classifier for the MGMT methylation status of glioblastoma in multiparametric MRI. We focused on multi-habitat deep image descriptors as our basic focus. A subset of the BRATS 2021 MGMT methylation dataset containing both MGMT class labels and segmentation masks was used.
View Article and Find Full Text PDFSci Rep
January 2025
School of Computer Science Engineering and Information Systems, Vellore Institute of Technology, Vellore, India.
This study introduces a novel ensemble learning technique namely Multi-Armed Bandit Ensemble (MAB-Ensemble), designed for lane detection in road images intended for autonomous vehicles. The foundation of the proposed MAB-Ensemble technique is inspired in terms of Multi-Armed bandit optimization to facilitate efficient model selection for lane segmentation. The benchmarking dataset namely TuSimple is used for training, validating and testing the proposed and existing lane detection techniques.
View Article and Find Full Text PDFSci Rep
January 2025
Ministry of Higher Education, Mataria Technical College, Cairo, 11718, Egypt.
The current work introduces the hybrid ensemble framework for the detection and segmentation of colorectal cancer. This framework will incorporate both supervised classification and unsupervised clustering methods to present more understandable and accurate diagnostic results. The method entails several steps with CNN models: ADa-22 and AD-22, transformer networks, and an SVM classifier, all inbuilt.
View Article and Find Full Text PDFSci Total Environ
January 2025
Universidad de Santiago de Chile, Santiago, Chile.
Assessing future snow cover changes is challenging because the high spatial resolution required is typically unavailable from climate models. This study, therefore, proposes an alternative approach to estimating snow changes by developing a super-spatial-resolution downscaling model of snow depth (SD) for Japan using a convolutional neural network (CNN)-based method, and by downscaling an ensemble of models from the Coupled Model Intercomparison Project Phase 6 (CMIP6) dataset. After assessing the coherence of the observed reference SD dataset with independent observations, we leveraged it to train the CNN downscaling model; following its evaluation, we applied the trained model to CMIP6 climate simulations.
View Article and Find Full Text PDFComput Methods Programs Biomed
January 2025
Regional Institute of Ophthalmology, Indira Gandhi Institute of Medical Sciences, Patna, 800025, Bihar, India.
Background And Objectives: Hypertensive Retinopathy (HR) is a retinal manifestation resulting from persistently elevated blood pressure. Severity grading of HR is essential for patient risk stratification, effective management, progression monitoring, timely intervention, and minimizing the risk of vision impairment. Computer-aided diagnosis and artificial intelligence (AI) systems play vital roles in the diagnosis and grading of HR.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!